Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Hybrid algebra/ode solver #446

Merged
merged 8 commits into from
Oct 11, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
11 changes: 11 additions & 0 deletions docs/bibliography.bib
Original file line number Diff line number Diff line change
Expand Up @@ -136,3 +136,14 @@ @article{kacser1973
langid = {english},
keywords = {Arginine,Enzyme Repression,Enzymes,Feedback,Kinetics,Melanins,Metabolism,{Models, Chemical},Neurospora crassa,Tyrosine 3-Monooxygenase}
}
@inproceedings{margossianComputingSteadyStates2018,
title = {Computing Steady States with {{Stan}}'s Nonlinear Algebraic Solver},
booktitle = {Stan {{Conference}} 2018},
author = {Margossian, Charles},
year = {2018},
month = jan,
doi = {10.5281/zenodo.1284375},
url = {10.5281/zenodo.1284375},
abstract = {Stan's numerical algebraic solver can be used to solve systems of nonlinear algebraic equations with no closed form solutions. One of its key applications in scientific and engineering fields is the computation of equilibrium states (equivalently steady states). This case study illustrates the use of the algebraic solver by applying it to a problem in pharmacometrics. In particular, I show the algebraic system we solve can be quite complex and embed, for instance, numerical solutions to ordinary differential equations. The code in R and Stan are provided, and a Bayesian model is fitted to simulated data},
file = {/Users/tedgro/Zotero/storage/5XCZ7KVA/Margossian - 2018 - Computing steady states with Stan's nonlinear alge.pdf}
}
11 changes: 8 additions & 3 deletions docs/inputting.md
Original file line number Diff line number Diff line change
Expand Up @@ -33,7 +33,8 @@ The following optional fields can also be specified:

* `reject_non_steady` Boolean saying whether to reject draws that enter non-steady states
* `penalize_non_steady` Boolean saying whether to penalize steady state deviations in the likelihood. It cannot be `True` when `reject_non_steady` is `True`.
* `ode_config` Table of configuration options for Stan's ode solver
* `ode_solver_config` Table of configuration options for Stan's ode solver
* `algebra_solver_config` Table of configuration options for Stan's algebra solver
* `cmdstanpy_config` Table of keyword arguments to the cmdstanpy method [`CmdStanModel.sample](https://cmdstanpy.readthedocs.io/en/v1.1.0/api.html#cmdstanpy.CmdStanModel.sample)
* `cmdstanpy_config_predict` Table of overriding sample keyword argments for predictions
* `stanc_options` Table of valid choices for [CmdStanModel](https://cmdstanpy.readthedocs.io/en/v1.1.0/api.html#cmdstanpy.CmdStanModel) argument `stanc_options`
Expand Down Expand Up @@ -68,11 +69,15 @@ Here is an example configuration file:
chains = 4
save_warmup = true

[ode_config]
[ode_solver_config]
abs_tol = 1e-4
rel_tol = 1e-4
max_num_steps = 1e6

[algebra_solver_config]
abs_tol = 1e-4
rel_tol = 1e-4
max_num_steps = 1e6
timepoint = 1e3

This file tells Maud that a file representing a kinetic model can be found at
the relative path `kinetic_model.toml`, and that priors and experimental
Expand Down
28 changes: 15 additions & 13 deletions docs/theory.md
Original file line number Diff line number Diff line change
Expand Up @@ -226,9 +226,8 @@ solving [](#eq-steady).

:::{note}

Note that in practice we do not solve [](#eq-steady) directly but instead use
ODE simulation - see section {ref}`sec-solving-the-steady-state-problem` for
details
See section {ref}`sec-solving-the-steady-state-problem` for how we solve
[](#eq-steady) in practice.

:::

Expand Down Expand Up @@ -337,16 +336,19 @@ adaptive Hamiltonian Monte Carlo requires gradients of the posterior
distribution, it is also necessary to calculate sensitivities of the steady
state solution with respect to all parameters.

Our approach to this problem is to choose a starting concentration vector
$x_{0}$ and a simulation time $t$, then find $x_t$ using numerical ODE
integration. To verify whether $x_t$ is a steady state we then evaluate $S\cdot
f_v(x_t, \theta)$ and check if the result is sufficiently close to zero.

Stan provides an interface to the Sundials ODE solver CVODES, including
gradient calculations.

For the systems we have investigated, this method works better than solving the
steady state problem using an algebra solver.
Our approach to this problem is, before MCMC sampling, to choose a
concentration vector $x_{guess}$. Every time Maud's sampler evaluates the
statistical model's log probability and gradients, it numerically solves
[](#eq-steady), and finds its gradients, using this starting guess and Stan's
interface to the Sundials Newton solver IDAS.

The system function that is passed to IDAS includes a representation of
[](#eq-steady) in Stan code. In order to model the instantaneous change of
metabolite concentrations for a given concentration vector due to
[](#eq-steady), Maud uses the Stan interface to the Sundials ODE solver CVODES
to evolve the system. This hybrid approach, using both numerical ODE solving
and algebra solving, follows the one taken in
{cite}`margossianComputingSteadyStates2018`.

It is relevant to note a caveat for the Maximum A Posteriori estimation
(optimization) in opposition to sampling the full distribution. In an
Expand Down
3 changes: 1 addition & 2 deletions maud/data/example_inputs/example_ode/config.toml
Original file line number Diff line number Diff line change
Expand Up @@ -9,6 +9,5 @@ iter_warmup = 0
iter_sampling = 1
chains = 1

[ode_config]
[ode_solver_config]
max_num_steps = 1e9
timepoint = 1e3
2 changes: 1 addition & 1 deletion maud/data/example_inputs/example_ode/input_data_train.json
Original file line number Diff line number Diff line change
@@ -1 +1 @@
{"N_mic": 4, "N_edge_sub": 5, "N_edge_prod": 5, "N_edge": 5, "N_unbalanced": 2, "N_enzyme": 5, "N_phosphorylation": 0, "N_pme": 0, "N_competitive_inhibition": 1, "N_allostery": 2, "N_allosteric_enzyme": 2, "N_drain": 0, "N_km": 10, "N_sub_km": 5, "N_prod_km": 5, "S": [[-1, -1, -1, 0, 0], [1, 0, 0, -1, 0], [0, 1, 1, 0, -1], [0, 0, 0, 1, 1]], "N_reaction": 4, "N_metabolite": 4, "balanced_mic_ix": [2, 3], "unbalanced_mic_ix": [1, 4], "ci_mic_ix": [4], "edge_type": [1, 1, 1, 1, 1], "edge_to_enzyme": [1, 2, 3, 4, 5], "edge_to_tc": [0, 1, 2, 0, 0], "edge_to_drain": [0, 0, 0, 0, 0], "edge_to_reaction": [1, 2, 2, 3, 4], "water_stoichiometry": [0.0, 0.0, 0.0, 0.0, 0.0], "transported_charge": [0.0, 0.0, 0.0, 0.0, 0.0], "mic_to_met": [1, 2, 3, 4], "subunits": [1, 1, 1, 1, 1], "sub_by_edge_long": [1, 1, 1, 2, 3], "sub_by_edge_bounds": [[1, 1], [2, 2], [3, 3], [4, 4], [5, 5]], "prod_by_edge_long": [2, 3, 3, 4, 4], "prod_by_edge_bounds": [[1, 1], [2, 2], [3, 3], [4, 4], [5, 5]], "sub_km_ix_by_edge_long": [1, 3, 5, 7, 9], "sub_km_ix_by_edge_bounds": [[1, 1], [2, 2], [3, 3], [4, 4], [5, 5]], "prod_km_ix_by_edge_long": [2, 4, 6, 8, 10], "prod_km_ix_by_edge_bounds": [[1, 1], [2, 2], [3, 3], [4, 4], [5, 5]], "ci_ix_long": [1], "ci_ix_bounds": [[1, 1], [2, 1], [2, 1], [2, 1], [2, 1]], "allostery_ix_long": [1, 2], "allostery_ix_bounds": [[1, 0], [1, 1], [2, 2], [3, 2], [3, 2]], "allostery_type": [1, 2], "allostery_mic": [3, 3], "phosphorylation_ix_long": [], "phosphorylation_ix_bounds": [[1, 0], [1, 0], [1, 0], [1, 0], [1, 0]], "phosphorylation_type": [], "phosphorylation_pme": [], "priors_km": [[-0.6931471805599453, 0.0, 0.6931471805599453, -0.6931471805599453, 0.0, 0.6931471805599453, -0.6931471805599453, 0.6931471805599453, 0.0, 1.0986122886681098], [0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2]], "priors_ki": [[0.0], [0.2]], "priors_kcat": [[-0.6931471805599453, 0.6931471805599453, 0.0, 0.6931471805599453, 0.0], [0.2, 0.2, 0.2, 0.2, 0.2]], "priors_dissociation_constant": [[-1.2039728043259361, -0.10536051565782628], [0.2, 0.2]], "priors_transfer_constant": [[0.0, 0.0], [0.2, 0.2]], "priors_kcat_pme": [[], []], "priors_drain_train": [[[]], [[]]], "priors_drain_test": [[[]], [[]]], "priors_conc_enzyme_train": [[[0.0, 0.6931471805599453, 1.0986122886681098, 0.6931471805599453, 1.0986122886681098]], [[0.2, 0.2, 0.2, 0.2, 0.2]]], "priors_conc_enzyme_test": [[[0.0, 0.6931471805599453, 1.0986122886681098, 0.6931471805599453, 1.0986122886681098]], [[0.2, 0.2, 0.2, 0.2, 0.2]]], "priors_conc_unbalanced_train": [[[1.6094379124341003, -0.6931471805599453]], [[0.2, 0.2]]], "priors_conc_unbalanced_test": [[[1.6094379124341003, -0.6931471805599453]], [[0.2, 0.2]]], "priors_conc_pme_train": [[[]], [[]]], "priors_conc_pme_test": [[[]], [[]]], "priors_psi_train": [[0.0], [2.0]], "prior_loc_dgf": [10.0, 2.0, 5.0, 0.0], "prior_cov_dgf": [[0.2, 0.0, 0.0, 0.0], [0.0, 0.2, 0.0, 0.0], [0.0, 0.0, 0.2, 0.0], [0.0, 0.0, 0.0, 0.2]], "N_experiment_train": 1, "N_flux_measurement_train": 2, "N_enzyme_measurement_train": 0, "N_conc_measurement_train": 2, "N_enzyme_knockout_train": 0, "N_pme_knockout_train": 0, "temperature_train": [298.15], "enzyme_knockout_train_long": [], "enzyme_knockout_train_bounds": [[1, 0]], "pme_knockout_train_long": [], "pme_knockout_train_bounds": [[1, 0]], "yconc_train": [0.323117, 3.02187], "sigma_yconc_train": [0.1, 0.1], "experiment_yconc_train": [1, 1], "mic_ix_yconc_train": [2, 3], "yflux_train": [0.421816, 2.11674], "sigma_yflux_train": [0.01, 0.01], "experiment_yflux_train": [1, 1], "reaction_yflux_train": [3, 4], "yenz_train": [], "sigma_yenz_train": [], "experiment_yenz_train": [], "enzyme_yenz_train": [], "likelihood": 1, "drain_small_conc_corrector": 1e-06, "reject_non_steady": 1, "penalize_non_steady": 0, "steady_state_threshold_abs": 1e-08, "steady_state_threshold_rel": 0.001, "steady_state_penalty_rel": 1e-08, "rel_tol": 1e-09, "abs_tol": 1e-09, "timepoint": 1000.0, "max_num_steps": 1000000000, "conc_init": [[0.323117, 3.02187]]}
{"N_mic": 4, "N_edge_sub": 5, "N_edge_prod": 5, "N_edge": 5, "N_unbalanced": 2, "N_enzyme": 5, "N_phosphorylation": 0, "N_pme": 0, "N_competitive_inhibition": 1, "N_allostery": 2, "N_allosteric_enzyme": 2, "N_drain": 0, "N_km": 10, "N_sub_km": 5, "N_prod_km": 5, "S": [[-1, -1, -1, 0, 0], [1, 0, 0, -1, 0], [0, 1, 1, 0, -1], [0, 0, 0, 1, 1]], "N_reaction": 4, "N_metabolite": 4, "balanced_mic_ix": [2, 3], "unbalanced_mic_ix": [1, 4], "ci_mic_ix": [4], "edge_type": [1, 1, 1, 1, 1], "edge_to_enzyme": [1, 2, 3, 4, 5], "edge_to_tc": [0, 1, 2, 0, 0], "edge_to_drain": [0, 0, 0, 0, 0], "edge_to_reaction": [1, 2, 2, 3, 4], "water_stoichiometry": [0.0, 0.0, 0.0, 0.0, 0.0], "transported_charge": [0.0, 0.0, 0.0, 0.0, 0.0], "mic_to_met": [1, 2, 3, 4], "subunits": [1, 1, 1, 1, 1], "sub_by_edge_long": [1, 1, 1, 2, 3], "sub_by_edge_bounds": [[1, 1], [2, 2], [3, 3], [4, 4], [5, 5]], "prod_by_edge_long": [2, 3, 3, 4, 4], "prod_by_edge_bounds": [[1, 1], [2, 2], [3, 3], [4, 4], [5, 5]], "sub_km_ix_by_edge_long": [1, 3, 5, 7, 9], "sub_km_ix_by_edge_bounds": [[1, 1], [2, 2], [3, 3], [4, 4], [5, 5]], "prod_km_ix_by_edge_long": [2, 4, 6, 8, 10], "prod_km_ix_by_edge_bounds": [[1, 1], [2, 2], [3, 3], [4, 4], [5, 5]], "ci_ix_long": [1], "ci_ix_bounds": [[1, 1], [2, 1], [2, 1], [2, 1], [2, 1]], "allostery_ix_long": [1, 2], "allostery_ix_bounds": [[1, 0], [1, 1], [2, 2], [3, 2], [3, 2]], "allostery_type": [1, 2], "allostery_mic": [3, 3], "phosphorylation_ix_long": [], "phosphorylation_ix_bounds": [[1, 0], [1, 0], [1, 0], [1, 0], [1, 0]], "phosphorylation_type": [], "phosphorylation_pme": [], "priors_km": [[-0.6931471805599453, 0.0, 0.6931471805599453, -0.6931471805599453, 0.0, 0.6931471805599453, -0.6931471805599453, 0.6931471805599453, 0.0, 1.0986122886681098], [0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2]], "priors_ki": [[0.0], [0.2]], "priors_kcat": [[-0.6931471805599453, 0.6931471805599453, 0.0, 0.6931471805599453, 0.0], [0.2, 0.2, 0.2, 0.2, 0.2]], "priors_dissociation_constant": [[-1.2039728043259361, -0.10536051565782628], [0.2, 0.2]], "priors_transfer_constant": [[0.0, 0.0], [0.2, 0.2]], "priors_kcat_pme": [[], []], "priors_drain_train": [[[]], [[]]], "priors_conc_enzyme_train": [[[0.0, 0.6931471805599453, 1.0986122886681098, 0.6931471805599453, 1.0986122886681098]], [[0.2, 0.2, 0.2, 0.2, 0.2]]], "priors_conc_unbalanced_train": [[[1.6094379124341003, -0.6931471805599453]], [[0.2, 0.2]]], "priors_conc_pme_train": [[[]], [[]]], "priors_psi_train": [[0.0], [2.0]], "prior_loc_dgf": [10.0, 2.0, 5.0, 0.0], "prior_cov_dgf": [[0.2, 0.0, 0.0, 0.0], [0.0, 0.2, 0.0, 0.0], [0.0, 0.0, 0.2, 0.0], [0.0, 0.0, 0.0, 0.2]], "N_experiment_train": 1, "N_flux_measurement_train": 2, "N_enzyme_measurement_train": 0, "N_conc_measurement_train": 2, "N_enzyme_knockout_train": 0, "N_pme_knockout_train": 0, "temperature_train": [298.15], "enzyme_knockout_train_long": [], "enzyme_knockout_train_bounds": [[1, 0]], "pme_knockout_train_long": [], "pme_knockout_train_bounds": [[1, 0]], "yconc_train": [0.323117, 3.02187], "sigma_yconc_train": [0.1, 0.1], "experiment_yconc_train": [1, 1], "mic_ix_yconc_train": [2, 3], "yflux_train": [0.421816, 2.11674], "sigma_yflux_train": [0.01, 0.01], "experiment_yflux_train": [1, 1], "reaction_yflux_train": [3, 4], "yenz_train": [], "sigma_yenz_train": [], "experiment_yenz_train": [], "enzyme_yenz_train": [], "likelihood": 1, "drain_small_conc_corrector": 1e-06, "reject_non_steady": 1, "penalize_non_steady": 0, "steady_state_threshold_abs": 1e-08, "steady_state_threshold_rel": 0.001, "steady_state_penalty_rel": 1e-08, "rel_tol_ode": 1e-09, "abs_tol_ode": 1e-09, "max_num_steps_ode": 1000000000, "rel_tol_alg": 1e-07, "abs_tol_alg": 1e-07, "max_num_steps_alg": 1000000, "conc_init": [[0.323117, 3.02187]]}
8 changes: 6 additions & 2 deletions maud/data/example_inputs/linear/config.toml
Original file line number Diff line number Diff line change
Expand Up @@ -13,8 +13,12 @@ chains = 4
save_warmup = true
seed = 1234

[ode_config]
[ode_solver_config]
abs_tol = 1e-7
rel_tol = 1e-7
max_num_steps = 1e6

[algebra_solver_config]
abs_tol = 1e-5
rel_tol = 1e-5
max_num_steps = 1e6
timepoint = 1e3
2 changes: 1 addition & 1 deletion maud/data/example_inputs/linear/expected_stan_input.json
Original file line number Diff line number Diff line change
@@ -1 +1 @@
{"N_mic": 4, "N_edge_sub": 3, "N_edge_prod": 3, "N_edge": 3, "N_unbalanced": 2, "N_enzyme": 3, "N_phosphorylation": 0, "N_pme": 0, "N_competitive_inhibition": 1, "N_allostery": 2, "N_allosteric_enzyme": 2, "N_drain": 0, "N_km": 5, "N_sub_km": 3, "N_prod_km": 2, "S": [[-1, 0, 0], [1, -1, 0], [0, 1, -1], [0, 0, 1]], "N_reaction": 3, "N_metabolite": 2, "balanced_mic_ix": [2, 3], "unbalanced_mic_ix": [1, 4], "ci_mic_ix": [2], "edge_type": [1, 2, 1], "edge_to_enzyme": [1, 2, 3], "edge_to_tc": [1, 2, 0], "edge_to_drain": [0, 0, 0], "edge_to_reaction": [1, 2, 3], "water_stoichiometry": [0.0, 0.0, 0.0], "transported_charge": [0.0, 0.0, 1.0], "mic_to_met": [1, 1, 2, 2], "subunits": [1, 1, 1], "sub_by_edge_long": [1, 2, 3], "sub_by_edge_bounds": [[1, 1], [2, 2], [3, 3]], "prod_by_edge_long": [2, 3, 4], "prod_by_edge_bounds": [[1, 1], [2, 2], [3, 3]], "sub_km_ix_by_edge_long": [1, 3, 4], "sub_km_ix_by_edge_bounds": [[1, 1], [2, 2], [3, 3]], "prod_km_ix_by_edge_long": [2, 5], "prod_km_ix_by_edge_bounds": [[1, 1], [2, 1], [2, 2]], "ci_ix_long": [1], "ci_ix_bounds": [[1, 0], [1, 1], [2, 1]], "allostery_ix_long": [1, 2], "allostery_ix_bounds": [[1, 1], [2, 2], [3, 2]], "allostery_type": [1, 2], "allostery_mic": [3, 2], "phosphorylation_ix_long": [], "phosphorylation_ix_bounds": [[1, 0], [1, 0], [1, 0]], "phosphorylation_type": [], "phosphorylation_pme": [], "priors_km": [[0.0, 0.0, 0.0, 0.0, 0.0], [0.6, 0.6, 0.6, 0.6, 0.6]], "priors_ki": [[0.0], [0.6]], "priors_kcat": [[0.0, 0.0, 0.0], [0.6, 0.6, 0.6]], "priors_dissociation_constant": [[0.0, 0.0], [0.6, 0.6]], "priors_transfer_constant": [[0.0, 0.0], [0.6, 0.6]], "priors_kcat_pme": [[], []], "priors_drain_train": [[[]], [[]]], "priors_conc_enzyme_train": [[[0.5, 0.5, 0.5], [0.5, 0.5, 0.5]], [[1.0, 1.0, 1.0], [1.0, 1.0, 1.0]]], "priors_conc_unbalanced_train": [[[-2.3, -2.3], [-2.3, -2.3]], [[2.0, 2.0], [2.0, 2.0]]], "priors_conc_pme_train": [[[]], [[]]], "priors_psi_train": [[-0.95, -0.95], [0.2, 0.2]], "prior_loc_dgf": [-1.0, -2.0], "prior_cov_dgf": [[0.05, 0.0], [0.0, 0.05]], "N_experiment_train": 2, "N_flux_measurement_train": 2, "N_enzyme_measurement_train": 6, "N_conc_measurement_train": 7, "N_enzyme_knockout_train": 0, "N_pme_knockout_train": 0, "temperature_train": [299.0, 298.15], "enzyme_knockout_train_long": [], "enzyme_knockout_train_bounds": [[1, 0], [1, 0]], "pme_knockout_train_long": [], "pme_knockout_train_bounds": [[1, 0], [1, 0]], "yconc_train": [0.59, 1.09, 1.05, 0.54, 0.38, 1.12, 1.14], "sigma_yconc_train": [0.1, 0.05, 0.05, 0.1, 0.1, 0.05, 0.05], "experiment_yconc_train": [1, 1, 1, 2, 2, 2, 2], "mic_ix_yconc_train": [2, 1, 4, 2, 3, 1, 4], "yflux_train": [0.19, 0.39], "sigma_yflux_train": [0.1, 0.1], "experiment_yflux_train": [1, 2], "reaction_yflux_train": [3, 3], "yenz_train": [1.5, 1.5, 1.5, 1.5, 1.5, 1.5], "sigma_yenz_train": [0.1, 0.1, 0.1, 0.1, 0.1, 0.1], "experiment_yenz_train": [1, 1, 1, 2, 2, 2], "enzyme_yenz_train": [1, 2, 3, 1, 2, 3], "likelihood": 1, "drain_small_conc_corrector": 1e-06, "reject_non_steady": 1, "penalize_non_steady": 0, "steady_state_threshold_abs": 1e-06, "steady_state_penalty_rel": 1e-08, "steady_state_threshold_rel": 0.001, "rel_tol": 1e-05, "abs_tol": 1e-05, "timepoint": 1000.0, "max_num_steps": 1000000, "conc_init": [[0.59, 0.38], [0.54, 0.38]]}
{"N_mic": 4, "N_edge_sub": 3, "N_edge_prod": 3, "N_edge": 3, "N_unbalanced": 2, "N_enzyme": 3, "N_phosphorylation": 0, "N_pme": 0, "N_competitive_inhibition": 1, "N_allostery": 2, "N_allosteric_enzyme": 2, "N_drain": 0, "N_km": 5, "N_sub_km": 3, "N_prod_km": 2, "S": [[-1, 0, 0], [1, -1, 0], [0, 1, -1], [0, 0, 1]], "N_reaction": 3, "N_metabolite": 2, "balanced_mic_ix": [2, 3], "unbalanced_mic_ix": [1, 4], "ci_mic_ix": [2], "edge_type": [1, 2, 1], "edge_to_enzyme": [1, 2, 3], "edge_to_tc": [1, 2, 0], "edge_to_drain": [0, 0, 0], "edge_to_reaction": [1, 2, 3], "water_stoichiometry": [0.0, 0.0, 0.0], "transported_charge": [0.0, 0.0, 1.0], "mic_to_met": [1, 1, 2, 2], "subunits": [1, 1, 1], "sub_by_edge_long": [1, 2, 3], "sub_by_edge_bounds": [[1, 1], [2, 2], [3, 3]], "prod_by_edge_long": [2, 3, 4], "prod_by_edge_bounds": [[1, 1], [2, 2], [3, 3]], "sub_km_ix_by_edge_long": [1, 3, 4], "sub_km_ix_by_edge_bounds": [[1, 1], [2, 2], [3, 3]], "prod_km_ix_by_edge_long": [2, 5], "prod_km_ix_by_edge_bounds": [[1, 1], [2, 1], [2, 2]], "ci_ix_long": [1], "ci_ix_bounds": [[1, 0], [1, 1], [2, 1]], "allostery_ix_long": [1, 2], "allostery_ix_bounds": [[1, 1], [2, 2], [3, 2]], "allostery_type": [1, 2], "allostery_mic": [3, 2], "phosphorylation_ix_long": [], "phosphorylation_ix_bounds": [[1, 0], [1, 0], [1, 0]], "phosphorylation_type": [], "phosphorylation_pme": [], "priors_km": [[0.0, 0.0, 0.0, 0.0, 0.0], [0.6, 0.6, 0.6, 0.6, 0.6]], "priors_ki": [[0.0], [0.6]], "priors_kcat": [[0.0, 0.0, 0.0], [0.6, 0.6, 0.6]], "priors_dissociation_constant": [[0.0, 0.0], [0.6, 0.6]], "priors_transfer_constant": [[0.0, 0.0], [0.6, 0.6]], "priors_kcat_pme": [[], []], "priors_drain_train": [[[]], [[]]], "priors_conc_enzyme_train": [[[0.5, 0.5, 0.5], [0.5, 0.5, 0.5]], [[1.0, 1.0, 1.0], [1.0, 1.0, 1.0]]], "priors_conc_unbalanced_train": [[[-2.3, -2.3], [-2.3, -2.3]], [[2.0, 2.0], [2.0, 2.0]]], "priors_conc_pme_train": [[[]], [[]]], "priors_psi_train": [[-0.95, -0.95], [0.2, 0.2]], "prior_loc_dgf": [-1.0, -2.0], "prior_cov_dgf": [[0.05, 0.0], [0.0, 0.05]], "N_experiment_train": 2, "N_flux_measurement_train": 2, "N_enzyme_measurement_train": 6, "N_conc_measurement_train": 7, "N_enzyme_knockout_train": 0, "N_pme_knockout_train": 0, "temperature_train": [299.0, 298.15], "enzyme_knockout_train_long": [], "enzyme_knockout_train_bounds": [[1, 0], [1, 0]], "pme_knockout_train_long": [], "pme_knockout_train_bounds": [[1, 0], [1, 0]], "yconc_train": [0.59, 1.09, 1.05, 0.54, 0.38, 1.12, 1.14], "sigma_yconc_train": [0.1, 0.05, 0.05, 0.1, 0.1, 0.05, 0.05], "experiment_yconc_train": [1, 1, 1, 2, 2, 2, 2], "mic_ix_yconc_train": [2, 1, 4, 2, 3, 1, 4], "yflux_train": [0.19, 0.39], "sigma_yflux_train": [0.1, 0.1], "experiment_yflux_train": [1, 2], "reaction_yflux_train": [3, 3], "yenz_train": [1.5, 1.5, 1.5, 1.5, 1.5, 1.5], "sigma_yenz_train": [0.1, 0.1, 0.1, 0.1, 0.1, 0.1], "experiment_yenz_train": [1, 1, 1, 2, 2, 2], "enzyme_yenz_train": [1, 2, 3, 1, 2, 3], "likelihood": 1, "drain_small_conc_corrector": 1e-06, "reject_non_steady": 1, "penalize_non_steady": 0, "steady_state_threshold_abs": 1e-06, "steady_state_threshold_rel": 0.001, "steady_state_penalty_rel": 1e-08, "rel_tol_ode": 1e-07, "abs_tol_ode": 1e-07, "max_num_steps_ode": 1000000, "rel_tol_alg": 1e-05, "abs_tol_alg": 1e-05, "max_num_steps_alg": 1000000, "conc_init": [[0.59, 0.38], [0.54, 0.38]]}
14 changes: 9 additions & 5 deletions maud/data/example_inputs/methionine/config.toml
Original file line number Diff line number Diff line change
Expand Up @@ -9,15 +9,19 @@ reject_non_steady = true
[cmdstanpy_config]
iter_warmup = 1000
iter_sampling = 1000
max_treedepth = 11
max_treedepth = 10
chains = 4
save_warmup = true
refresh = 1
metric = "dense_e"
adapt_delta = 0.99

[ode_config]
rel_tol = 1e-9
abs_tol = 1e-9
[ode_solver_config]
rel_tol = 1e-8
abs_tol = 1e-8
max_num_steps = 1000000.0
timepoint = 1e+20

[algebra_solver_config]
rel_tol = 1e-6
abs_tol = 1e-6
max_num_steps = 1000000
Loading