-
-
Notifications
You must be signed in to change notification settings - Fork 1k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
52 additions
and
0 deletions.
There are no files selected for viewing
52 changes: 52 additions & 0 deletions
52
Orange/widgets/regression/tests/test_owadaboostregression.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,52 @@ | ||
# Test methods with long descriptive names can omit docstrings | ||
# pylint: disable=missing-docstring | ||
from Orange.regression import TreeRegressionLearner, KNNRegressionLearner | ||
from Orange.widgets.regression.owadaboostregression import OWAdaBoostRegression | ||
from Orange.widgets.tests.base import (WidgetTest, WidgetLearnerTestMixin, | ||
GuiToParam) | ||
|
||
|
||
class TestOWAdaBoostRegression(WidgetTest, WidgetLearnerTestMixin): | ||
def setUp(self): | ||
self.widget = self.create_widget(OWAdaBoostRegression, | ||
stored_settings={"auto_apply": False}) | ||
self.init() | ||
|
||
def combo_set_value(i, x): | ||
x.activated.emit(i) | ||
x.setCurrentIndex(i) | ||
|
||
losses = [loss.lower() for loss in self.widget.losses] | ||
nest_spin = self.widget.n_estimators_spin | ||
nest_min_max = [nest_spin.minimum(), nest_spin.maximum()] | ||
rate_spin = self.widget.learning_rate_spin | ||
rate_min_max = [rate_spin.minimum(), rate_spin.maximum()] | ||
self.gui_to_params = [ | ||
GuiToParam('loss', self.widget.loss_combo, | ||
lambda x: x.currentText().lower(), | ||
combo_set_value, losses, list(range(len(losses)))), | ||
GuiToParam('learning_rate', rate_spin, lambda x: x.value(), | ||
lambda i, x: x.setValue(i), rate_min_max, rate_min_max), | ||
GuiToParam('n_estimators', nest_spin, lambda x: x.value(), | ||
lambda i, x: x.setValue(i), nest_min_max, nest_min_max)] | ||
|
||
def test_input_learner(self): | ||
"""Check if base learner properly changes with learner on the input""" | ||
max_depth = 2 | ||
default_base_est = self.widget.base_estimator | ||
self.assertIsInstance(default_base_est, TreeRegressionLearner) | ||
self.assertIsNone(default_base_est.params.get("max_depth")) | ||
self.send_signal("Learner", TreeRegressionLearner(max_depth=max_depth)) | ||
self.assertEqual(self.widget.base_estimator.params.get("max_depth"), | ||
max_depth) | ||
self.widget.apply_button.button.click() | ||
output_base_est = self.get_output("Learner").params.get("base_estimator") | ||
self.assertEqual(output_base_est.max_depth, max_depth) | ||
|
||
def test_input_learner_disconnect(self): | ||
"""Check base learner after disconnecting learner on the input""" | ||
self.send_signal("Learner", KNNRegressionLearner()) | ||
self.assertIsInstance(self.widget.base_estimator, KNNRegressionLearner) | ||
self.send_signal("Learner", None) | ||
self.assertEqual(self.widget.base_estimator, | ||
self.widget.DEFAULT_BASE_ESTIMATOR) |