Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[ENH] Load data: Add data loader for H5AD format #356

Merged
merged 1 commit into from
Sep 6, 2019
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Binary file not shown.
Binary file not shown.
20 changes: 19 additions & 1 deletion orangecontrib/single_cell/tests/test_load_data.py
Original file line number Diff line number Diff line change
Expand Up @@ -9,7 +9,7 @@

from orangecontrib.single_cell.widgets.load_data import (
LoomLoader, ExcelLoader, MtxLoader, CountLoader, Loader, PickleLoader,
CsvLoader, get_data_loader, Concatenate
CsvLoader, H5ADLoader, get_data_loader, Concatenate,
)


Expand All @@ -21,6 +21,8 @@ def test_get_data_loader(self):
self.assertIsInstance(loader, Loader)
self.assertIsInstance(get_data_loader("data.xls"), ExcelLoader)
self.assertIsInstance(get_data_loader("data.loom"), LoomLoader)
self.assertIsInstance(get_data_loader("data_sparse.h5ad"), H5ADLoader)
self.assertIsInstance(get_data_loader("data_dense.h5ad"), H5ADLoader)

def test_get_data_loader_pickle(self):
self.assertIsInstance(get_data_loader("data.pkl"), PickleLoader)
Expand Down Expand Up @@ -89,6 +91,22 @@ def test_file_summary_loom(self):
self.assertEqual(loader.n_cols, 20)
self.assertEqual(round(loader.sparsity, 2), 0.93)

def test_file_summary_h5ad_sparse(self):
file_name = os.path.join(os.path.dirname(__file__), "data/data_sparse.h5ad")
loader = H5ADLoader(file_name)
self.assertEqual(19560, loader.file_size)
self.assertEqual(20, loader.n_rows)
self.assertEqual(25, loader.n_cols)
self.assertEqual(0.59, round(loader.sparsity, 2))

def test_file_summary_h5ad_dense(self):
file_name = os.path.join(os.path.dirname(__file__), "data/data_dense.h5ad")
loader = H5ADLoader(file_name)
self.assertEqual(11060, loader.file_size)
self.assertEqual(20, loader.n_rows)
self.assertEqual(25, loader.n_cols)
self.assertEqual(0.59, round(loader.sparsity, 2))

def test_load_data_mtx(self):
file_name = os.path.join(os.path.dirname(__file__),
"data/10x/mm10/matrix.mtx")
Expand Down
41 changes: 40 additions & 1 deletion orangecontrib/single_cell/tests/test_owloaddata.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,7 +5,6 @@
import pandas as pd

from Orange.data import ContinuousVariable, Variable
from Orange.widgets.data.owtable import OWDataTable
from Orange.widgets.tests.base import WidgetTest

from orangecontrib.single_cell.widgets.owloaddata import OWLoadData
Expand Down Expand Up @@ -241,6 +240,46 @@ def test_load_data_loom_sample(self):
self.assertListEqual([attr.name for attr in data.domain.attributes],
["0", "1", "2", "3", "6", "7"])

def test_load_data_h5ad_sparse_sample(self):
file_name = os.path.join(self._path, "data_sparse.h5ad")
self.widget.set_current_path(file_name)
self.widget.sample_rows_cb.setChecked(True)
self.widget.sample_cols_cb.setChecked(True)
self.widget.set_sample_rows_p(30)
self.widget.set_sample_cols_p(10)
self.widget.commit()
data = self.get_output("Data")
X = np.array([[0, 2, 1, 0], [1, 0, 0, 0], [2, 1, 2, 1], [1, 1, 0, 0],
[1, 0, 0, 0], [0, 1, 0, 2], [1, 0, 0, 1], [0, 2, 0, 1],
[0, 1, 1, 0]])
npt.assert_array_equal(data.X, X)
metas = np.array([[0, 0, 10], [1, 0, 10], [2, 0, 15], [3, 0, 10],
[6, 1, 11], [7, 1, 15], [8, 1, 11], [9, 1, 20],
[14, 2, 12]])
npt.assert_array_equal(data.metas, metas)
self.assertListEqual([attr.name for attr in data.domain.attributes],
["Gene 0", "Gene 1", "Gene 2", "Gene 3"])

def test_load_data_h5ad_dense_sample(self):
file_name = os.path.join(self._path, "data_dense.h5ad")
self.widget.set_current_path(file_name)
self.widget.sample_rows_cb.setChecked(True)
self.widget.sample_cols_cb.setChecked(True)
self.widget.set_sample_rows_p(30)
self.widget.set_sample_cols_p(10)
self.widget.commit()
data = self.get_output("Data")
X = np.array([[0, 2, 1, 0], [1, 0, 0, 0], [2, 1, 2, 1], [1, 1, 0, 0],
[1, 0, 0, 0], [0, 1, 0, 2], [1, 0, 0, 1], [0, 2, 0, 1],
[0, 1, 1, 0]])
npt.assert_array_equal(data.X, X)
metas = np.array([[0, 0, 10], [1, 0, 10], [2, 0, 15], [3, 0, 10],
[6, 1, 11], [7, 1, 15], [8, 1, 11], [9, 1, 20],
[14, 2, 12]])
npt.assert_array_equal(data.metas, metas)
self.assertListEqual([attr.name for attr in data.domain.attributes],
["Gene 0", "Gene 1", "Gene 2", "Gene 3"])

def test_not_enough_headers(self):
file_name = os.path.join(self._path, "DATA_MATRIX_LOG_TPM.txt")
self.widget.set_current_path(file_name)
Expand Down
58 changes: 56 additions & 2 deletions orangecontrib/single_cell/widgets/load_data.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,11 +6,12 @@
import numpy as np
import pandas as pd
import scipy.io
import scipy.sparse as sp
import loompy as lp
import xlrd

from Orange.data import (
ContinuousVariable, DiscreteVariable, Domain, Table, StringVariable
ContinuousVariable, DiscreteVariable, Domain, Table
)
from Orange.data.io import (
Compression, open_compressed, PickleReader,
Expand Down Expand Up @@ -49,6 +50,8 @@ def get_data_loader(file_name):
return ExcelLoader(file_name)
elif ext == ".loom":
return LoomLoader(file_name)
elif ext == ".h5ad":
return H5ADLoader(file_name)
else:
return Loader(file_name)

Expand Down Expand Up @@ -425,7 +428,7 @@ def __into_orange_table(self, attrs, X, meta_parts):
@staticmethod
def __guess_metas(meta_parts):
def guessed_var(i, var_name, dtype):
if np.issubdtype(dtype, np.number):
if pd.core.dtypes.common.is_numeric_dtype(dtype):
return ContinuousVariable.make(var_name)
orig_values = M[:, i]
val_map, values, var_type = guess_data_type(orig_values)
Expand Down Expand Up @@ -666,6 +669,57 @@ def _load_data(self, skip_row=None, skip_col=None, **kwargs):
attrs = [ContinuousVariable.make(str(g)) for g in gene_names]
meta_df = pd.DataFrame({key: ds.ca[key][self._use_cols_mask]
for key in ds.ca.keys()})

return attrs, X, meta_df, meta_df.index


class H5ADLoader(Loader):
def __init__(self, file_name):
super().__init__(file_name)
self.header_rows_count = 0
self.header_cols_count = 0
self.FIXED_FORMAT = False
self.ENABLE_ANNOTATIONS = False
self.transposed = False
self.row_annotations_enabled = False
self.col_annotations_enabled = False

def _set_file_parameters(self):
import anndata
try:
adata = anndata.read_h5ad(self._file_name)
self.n_rows, self.n_cols = adata.shape
all_el = self.n_rows * self.n_cols
if sp.issparse(adata.X):
self.sparsity = (all_el - adata.X.tocsr().count_nonzero()) / all_el
else:
self.sparsity = (all_el - np.count_nonzero(adata.X)) / all_el
except OSError:
pass

def _load_data(self, skip_row=None, skip_col=None, **kwargs):
import anndata
adata = anndata.read_h5ad(self._file_name)

if skip_row is not None:
mask = np.array([not skip_row(i) for i in range(adata.shape[0])])
self._use_rows_mask = mask
else:
self._use_rows_mask = np.ones(adata.shape[0], dtype=bool)
if skip_col is not None:
mask = np.array([not skip_col(i) for i in range(adata.shape[1])])
self._use_cols_mask = mask
else:
self._use_cols_mask = np.ones(adata.shape[1], dtype=bool)

adata = adata[self._use_rows_mask, :]
adata = adata[:, self._use_cols_mask]

attrs = [ContinuousVariable.make(str(g)) for g in adata.var_names]
meta_df = pd.DataFrame({key: adata.obs[key] for key in adata.obs.keys()})

X = adata.X.toarray() if sp.issparse(adata.X) else adata.X

return attrs, X, meta_df, meta_df.index


Expand Down
1 change: 1 addition & 0 deletions setup.py
Original file line number Diff line number Diff line change
Expand Up @@ -35,6 +35,7 @@ def include_documentation(local_dir, install_dir):
'fastdtw==0.3.2',
'pandas>=0.23',
'loompy>=2.0.10',
'anndata>=0.6.21',
'numpy',
'scikit-learn',
],
Expand Down