-
Notifications
You must be signed in to change notification settings - Fork 17
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Add special support to export models usable in DeepImageJ #546
Open
FynnBe
wants to merge
1
commit into
main
Choose a base branch
from
deepimagej_export
base: main
Could not load branches
Branch not found: {{ refName }}
Loading
Could not load tags
Nothing to show
Loading
Are you sure you want to change the base?
Some commits from the old base branch may be removed from the timeline,
and old review comments may become outdated.
Open
Changes from all commits
Commits
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
221 changes: 221 additions & 0 deletions
221
bioimageio/spec/partner_utils/deepimagej/_build_config.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,221 @@ | ||
import warnings | ||
from functools import singledispatch | ||
from typing import Any, Dict, List, Literal, Optional, Sequence, Tuple, Union | ||
|
||
from typing_extensions import NotRequired, TypedDict | ||
|
||
from bioimageio.spec._internal.io_utils import download, load_array | ||
from bioimageio.spec._internal.types import FileName, FileSource | ||
from bioimageio.spec.model import v0_4, v0_5 | ||
|
||
MacroId = Literal["binarize", "scale_linear", "scale_range", "zero_mean_unit_variance", "fixed_zero_mean_unit_variance"] | ||
MacroFileName = Literal[ | ||
"binarize.ijm", | ||
"scale_linear.ijm", | ||
"per_sample_scale_range.ijm", | ||
"fixed_zero_mean_unit_variance.ijm", | ||
"zero_mean_unit_variance.ijm", | ||
] | ||
|
||
|
||
class DeepImageJProc_Config(TypedDict): | ||
spec: Optional[Literal["ij.IJ::runMacroFile"]] | ||
kwargs: NotRequired[MacroFileName] | ||
|
||
|
||
DeepImageJ_Config = Dict[str, Any] | ||
|
||
ConfigWithDeepImageJ_Config = Dict[str, Union[DeepImageJProc_Config, Any]] | ||
MacroFileContent = str | ||
|
||
|
||
def dij_warning(msg: str): | ||
warnings.warn(f"DeepImageJ: {msg}") | ||
|
||
|
||
@singledispatch | ||
def _get_deepimagej_macro( | ||
proc: type, | ||
) -> Tuple[DeepImageJProc_Config, MacroFileName, MacroFileContent]: | ||
raise TypeError(f"Invalid processing description {type(proc)}") | ||
|
||
|
||
@_get_deepimagej_macro.register | ||
def _( | ||
proc: Union[v0_4.PreprocessingDescr, v0_4.PostprocessingDescr] | ||
) -> Tuple[DeepImageJProc_Config, MacroFileName, MacroFileContent]: | ||
raise NotImplementedError(f"Macro {proc.name} is not available") | ||
|
||
|
||
@_get_deepimagej_macro.register | ||
def _( | ||
proc: Union[v0_5.PreprocessingDescr, v0_5.PostprocessingDescr] | ||
) -> Tuple[DeepImageJProc_Config, MacroFileName, MacroFileContent]: | ||
raise NotImplementedError(f"Macro {proc.id} is not available") | ||
|
||
|
||
@_get_deepimagej_macro.register | ||
def _(proc: v0_4.ScaleLinearDescr) -> Tuple[DeepImageJProc_Config, MacroFileName, MacroFileContent]: | ||
if proc.kwargs.axes is not None: | ||
raise NotImplementedError("DeepImageJ Macro 'scale_linear.ijm' with axes.") | ||
|
||
return _format_macro("scale_linear.ijm", replace={"gain": proc.kwargs.gain, "offset": proc.kwargs.offset}) | ||
|
||
|
||
@_get_deepimagej_macro.register | ||
def _(proc: v0_5.ScaleLinearDescr) -> Tuple[DeepImageJProc_Config, MacroFileName, MacroFileContent]: | ||
if proc.kwargs.axis is not None: | ||
raise NotImplementedError("DeepImageJ Macro 'scale_linear.ijm' with axis.") | ||
|
||
return _format_macro("scale_linear.ijm", replace={"gain": proc.kwargs.gain, "offset": proc.kwargs.offset}) | ||
|
||
|
||
@_get_deepimagej_macro.register | ||
def _( | ||
proc: Union[v0_4.ScaleRangeDescr, v0_5.ScaleRangeDescr] | ||
) -> Tuple[DeepImageJProc_Config, MacroFileName, MacroFileContent]: | ||
dij_warning(f"ignoring axes kwarg {proc.kwargs.axes}") | ||
dij_warning(f"ignoring eps kwarg {proc.kwargs.eps}") | ||
|
||
return _format_macro( | ||
"per_sample_scale_range.ijm", | ||
replace={"min_precentile": proc.kwargs.min_percentile, "max_percentile": proc.kwargs.max_percentile}, | ||
) | ||
|
||
|
||
@_get_deepimagej_macro.register | ||
def _(proc: v0_5.FixedZeroMeanUnitVarianceDescr) -> Tuple[DeepImageJProc_Config, MacroFileName, MacroFileContent]: | ||
if proc.kwargs.axis is not None: | ||
raise NotImplementedError("DeepImageJ Macro 'fixed_zero_mean_unit_variance.ijm; with axis not implemented") | ||
|
||
return _format_macro( | ||
"fixed_zero_mean_unit_variance.ijm", replace={"paramMean": proc.kwargs.mean, "paramStd": proc.kwargs.std} | ||
) | ||
|
||
|
||
@_get_deepimagej_macro.register | ||
def _(proc: v0_4.ZeroMeanUnitVarianceDescr) -> Tuple[DeepImageJProc_Config, MacroFileName, MacroFileContent]: | ||
dij_warning(f"ignoring axes kwarg {proc.kwargs.axes}") | ||
dij_warning(f"ignoring eps kwarg {proc.kwargs.eps}") | ||
if proc.kwargs.mode == "fixed": | ||
return _format_macro( | ||
"fixed_zero_mean_unit_variance.ijm", replace={"paramMean": proc.kwargs.mean, "paramStd": proc.kwargs.std} | ||
) | ||
|
||
return _format_macro("zero_mean_unit_variance.ijm", replace={}) | ||
|
||
|
||
@_get_deepimagej_macro.register | ||
def _( | ||
proc: Union[v0_4.BinarizeDescr, v0_5.BinarizeDescr] | ||
) -> Tuple[DeepImageJProc_Config, MacroFileName, MacroFileContent]: | ||
return _format_macro("binarize.ijm", replace={"optimalThreshold": proc.kwargs.threshold}) | ||
|
||
|
||
def _format_macro( | ||
macro: MacroFileName, replace: Dict[str, Any] | ||
) -> Tuple[DeepImageJProc_Config, MacroFileName, MacroFileContent]: | ||
original_macro = download( | ||
f"https://raw.githubusercontent.com/deepimagej/imagej-macros/master/bioimage.io/{macro}" | ||
).path.read_text() | ||
|
||
# replace the kwargs in the macro file | ||
if replace: | ||
lines = [] | ||
for line in original_macro.split("\n"): | ||
kwarg_candidates = [kwarg for kwarg in replace if line.startswith(kwarg)] | ||
if kwarg_candidates: | ||
assert len(kwarg_candidates) == 1 | ||
kwarg = kwarg_candidates[0] | ||
# each kwarg should only be replaced ones | ||
val = replace.pop(kwarg) | ||
lines.append(f"{kwarg} = {val};\n") | ||
else: | ||
lines.append(line) | ||
|
||
macro_content: MacroFileContent = "\n".join(lines) | ||
else: | ||
macro_content: MacroFileContent = original_macro | ||
|
||
return {"spec": "ij.IJ::runMacroFile", "kwargs": macro}, macro, macro_content | ||
|
||
|
||
def build_deepimagej_config( | ||
model: Union[v0_4.ModelDescr, v0_5.ModelDescr], | ||
) -> Tuple[ConfigWithDeepImageJ_Config, Dict[FileName, MacroFileContent]]: # type: ignore | ||
if len(model.inputs) != 1 or len(model.outputs) != 1: | ||
raise ValueError("deepimagej config only valid for single input/output") | ||
|
||
attachments: Dict[FileName, MacroFileContent] = {} | ||
ipt = model.inputs[0] | ||
tensor_id = ipt.name if isinstance(ipt, v0_4.InputTensorDescr) else ipt.id | ||
|
||
if len(ipt.preprocessing) == 0: | ||
preprocess_ij: List[DeepImageJProc_Config] = [{"spec": None}] | ||
elif len(ipt.preprocessing) == 1: | ||
preprocess_ij = [] | ||
for p in ipt.preprocessing: | ||
dij_proc_config, macro_file_name, macro_content = _get_deepimagej_macro(p) | ||
preprocess_ij.append(dij_proc_config) | ||
attachments[f"{tensor_id}_{macro_file_name}"] = macro_content | ||
|
||
else: | ||
raise ValueError("deepimagej does not support multiple preprocesing steps for one input tensor") | ||
|
||
out = model.outputs[0] | ||
if len(out.postprocessing) == 0: | ||
postprocess_ij: List[DeepImageJProc_Config] = [{"spec": None}] | ||
elif len(out.postprocessing) == 1: | ||
postprocess_ij = [] | ||
for p in out.postprocessing: | ||
dij_proc_config, macro_file_name, macro_content = _get_deepimagej_macro(p) | ||
postprocess_ij.append(dij_proc_config) | ||
attachments[f"{tensor_id}_{macro_file_name}"] = macro_content | ||
|
||
else: | ||
raise ValueError("deepimagej does not support multiple postprocesing steps for one output tensor") | ||
|
||
def get_test_tensor_size(test_tensor_source: FileSource, axes: Sequence[v0_4.AxesStr]): # type: ignore | ||
shape = load_array(test_tensor_source).shape | ||
assert len(shape) == len(axes) | ||
shape = [sh for sh, ax in zip(shape, axes) if ax != "b"] | ||
axes = [ax for ax in axes if ax != "b"] | ||
# the shape for deepij is always given as xyzc | ||
if len(shape) == 3: | ||
axes_ij = "xyc" | ||
else: | ||
axes_ij = "xyzc" | ||
assert set(axes) == set(axes_ij) | ||
axis_permutation = [axes_ij.index(ax) for ax in axes] | ||
shape = [shape[permut] for permut in axis_permutation] | ||
if len(shape) == 3: | ||
shape = shape[:2] + [1] + shape[-1:] | ||
assert len(shape) == 4 | ||
return " x ".join(map(str, shape)) | ||
|
||
# TODO: finish implementation | ||
# # deepimagej always expexts a pixel size for the z axis | ||
# pixel_sizes_ = [pix_size if "z" in pix_size else dict(z=1.0, **pix_size) for pix_size in pixel_sizes] | ||
|
||
# test_info = { | ||
# "inputs": [ | ||
# {"name": in_path, "size": get_test_tensor_size(in_path, axes), "pixel_size": pix_size} | ||
# for in_path, axes, pix_size in zip(test_inputs, input_axes, pixel_sizes_) | ||
# ], | ||
# "outputs": [ | ||
# {"name": out_path, "type": "image", "size": get_test_tensor_size(out_path, axes)} | ||
# for out_path, axes in zip(test_outputs, output_axes) | ||
# ], | ||
# "memory_peak": None, | ||
# "runtime": None, | ||
# } | ||
|
||
# config = { | ||
# "prediction": {"preprocess": preprocess_ij, "postprocess": postprocess_ij}, | ||
# "test_information": test_info, | ||
# # other stuff deepimagej needs | ||
# "pyramidal_model": False, | ||
# "allow_tiling": True, | ||
# "model_keys": None, | ||
# } | ||
# return {"deepimagej": config}, [Path(a) for a in attachments] |
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
no, someone would have to finish the implementation first 😄