-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
80d1fb0
commit 837be06
Showing
1 changed file
with
106 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,106 @@ | ||
import itertools | ||
import numpy as np | ||
from functools import partial | ||
from tot.models import gpt | ||
|
||
|
||
def get_value(task, x, y, n_evaluate_sample, cache_value=True): | ||
value_prompt = task.value_prompt_wrap(x, y) | ||
if cache_value and value_prompt in task.value_cache: | ||
return task.value_cache[value_prompt] | ||
value_outputs = gpt(value_prompt, n=n_evaluate_sample, stop=None) | ||
value = task.value_outputs_unwrap(x, y, value_outputs) | ||
if cache_value: | ||
task.value_cache[value_prompt] = value | ||
return value | ||
|
||
|
||
def get_values(task, x, ys, n_evaluate_sample, cache_value=True): | ||
values = [] | ||
local_value_cache = {} | ||
for y in ys: # each partial output | ||
if y in local_value_cache: # avoid duplicate candidates | ||
value = 0 | ||
else: | ||
value = get_value(task, x, y, n_evaluate_sample, cache_value=cache_value) | ||
local_value_cache[y] = value | ||
values.append(value) | ||
return values | ||
|
||
|
||
def get_votes(task, x, ys, n_evaluate_sample): | ||
vote_prompt = task.vote_prompt_wrap(x, ys) | ||
vote_outputs = gpt(vote_prompt, n=n_evaluate_sample, stop=None) | ||
values = task.vote_outputs_unwrap(vote_outputs, len(ys)) | ||
return values | ||
|
||
|
||
def get_proposals(task, x, y): | ||
propose_prompt = task.propose_prompt_wrap(x, y) | ||
proposals = gpt(propose_prompt, n=1, stop=None)[0].split('\n') | ||
return [y + _ + '\n' for _ in proposals] | ||
|
||
|
||
def get_samples(task, x, y, n_generate_sample, prompt_sample, stop): | ||
if prompt_sample == 'standard': | ||
prompt = task.standard_prompt_wrap(x, y) | ||
elif prompt_sample == 'cot': | ||
prompt = task.cot_prompt_wrap(x, y) | ||
else: | ||
raise ValueError(f'prompt_sample {prompt_sample} not recognized') | ||
samples = gpt(prompt, n=n_generate_sample, stop=stop) | ||
return [y + _ for _ in samples] | ||
|
||
|
||
def solve(args, task, idx, to_print=True): | ||
global gpt | ||
gpt = partial(gpt, model=args.backend, temperature=args.temperature) | ||
print(gpt) | ||
x = task.get_input(idx) # input | ||
ys = [''] # current output candidates | ||
infos = [] | ||
for step in range(task.steps): | ||
# generation | ||
if args.method_generate == 'sample': | ||
new_ys = [ | ||
get_samples(task, x, y, args.n_generate_sample, prompt_sample=args.prompt_sample, stop=task.stops[step]) | ||
for y in ys] | ||
elif args.method_generate == 'propose': | ||
new_ys = [get_proposals(task, x, y) for y in ys] | ||
new_ys = list(itertools.chain(*new_ys)) | ||
ids = list(range(len(new_ys))) | ||
# evaluation | ||
if args.method_evaluate == 'vote': | ||
values = get_votes(task, x, new_ys, args.n_evaluate_sample) | ||
elif args.method_evaluate == 'value': | ||
values = get_values(task, x, new_ys, args.n_evaluate_sample) | ||
|
||
# selection | ||
if args.method_select == 'sample': | ||
ps = np.array(values) / sum(values) | ||
select_ids = np.random.choice(ids, size=args.n_select_sample, p=ps).tolist() | ||
elif args.method_select == 'greedy': | ||
select_ids = sorted(ids, key=lambda x: values[x], reverse=True)[:args.n_select_sample] | ||
select_new_ys = [new_ys[select_id] for select_id in select_ids] | ||
|
||
# log | ||
if to_print: | ||
sorted_new_ys, sorted_values = zip(*sorted(zip(new_ys, values), key=lambda x: x[1], reverse=True)) | ||
print(f'-- new_ys --: {sorted_new_ys}\n-- sol values --: {sorted_values}\n-- choices --: {select_new_ys}\n') | ||
|
||
infos.append( | ||
{'step': step, 'x': x, 'ys': ys, 'new_ys': new_ys, 'values': values, 'select_new_ys': select_new_ys}) | ||
ys = select_new_ys | ||
|
||
if to_print: | ||
print(ys) | ||
return ys, {'steps': infos} | ||
|
||
|
||
def naive_solve(args, task, idx, to_print=True): | ||
global gpt | ||
gpt = partial(gpt, model=args.backend, temperature=args.temperature) | ||
print(gpt) | ||
x = task.get_input(idx) # input | ||
ys = get_samples(task, x, '', args.n_generate_sample, args.prompt_sample, stop=None) | ||
return ys, {} |