Skip to content

aylai/DiscourseCoherence

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

1 Commit
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

DiscourseCoherenceDev

Dependencies

This code is written in Python. The dependencies are:

Evaluation

All models can be trained for 4 different evaluation tasks:

  • 'class': 3-class classification (low, medium, high coherence)
  • 'score_pred': mean score prediction
  • 'perm': binary ranking of original vs. permuted texts (requires text permutation files)
  • 'minority': binary classification of low coherence vs. all other texts

Data Directory Structure

The GDCD data is available by request (see https://github.com/aylai/GCDC-corpus for details). To run the preprocessing scripts, you will have to create a directory for each corpus in 'data/' containing the train and test csv files. For the Yelp data, you will need to download the data separately (https://www.yelp.com/dataset) and add the corresponding review titles and texts to the incomplete csv file (the CSV header should match the fields in the Clinton and Enron CSVs).

Preprocessing

'corpus' refers to the corpus name: {Yahoo, Clinton, Enron, Yelp}

1) Extract texts from CSV to separate files. Required for entity grid and entity graph models, as well as generating text permutations for evaluation.

Input: data/[corpus]/[corpus]_train.csv and data/[corpus]/[corpus]_test.csv files. Output: data/[corpus]/text/ directory containing all individual text files.

python3 csv_to_text_files.py [corpus]

2) Generate permutation text files (20 per text). Only generates permutations for high-coherence texts (label = 3). Required for evaluating any model on the binary permutation ranking task (can skip this step for all other experiments).

Input: data/[corpus]/[corpus]_train.csv, data/[corpus]/[corpus]_test.csv, and data/[corpus]/text/ files. Output: data/[corpus]/text_permute directory containing original and permuted text files for all high-coherence texts.

python3 generate_high_coh_permutations [corpus]

3) Extract entity grid files (requires Stanford CoreNLP for parsing). Required for entity grid and entity graph models.

This step requires running the Stanford CoreNLP server (with Java 8, not Java 9). More details here: https://github.com/smilli/py-corenlp and here: https://stanfordnlp.github.io/CoreNLP/corenlp-server.html#getting-started. You will probably need to run the server with -timeout 50000 (or possibly higher) instead of -timeout 15000 in order to process the longest documents in this dataset.

Original files only:

Input: data/[corpus]/text/ files. Output: data/[corpus]/parsed/ and data/[corpus]/grid/ files.

python3 extract_entity_grid.py [corpus]

Permuted files:

Input: data/[corpus]/text_permute/ files. Output: data/[corpus]/parsed_permute/ and data/[corpus]/grid_permute/ files

python3 extract_entity_grid_perm.py [corpus]

4) Extract entity graph files from entity grid files. Extracts 6 different types of entity graphs: {unweighted, weighted, and syntax-sensitive} with or without distance discounting. Specify 'true' or 'false' for 'is_permutation' argument. Required for entity graph model.

Input: data/[corpus]/grid[_permute]/ files. Output: data/[corpus]/graph[_permute] files.

python3 extract_graph_from_grid.py [corpus] [is_permutation]

5) Extract features from entity grid files. Required for entity grid model. Must specify:

  • 'seq_len' the number of sequential sentences over which to compute features (e.g. 2, 3, 4)
  • 'salience_threshold' the threshold for salient vs. non-salient entities (e.g. 2, 3, 4 occurrences); specify '1' for only one saliance class
  • 'syntax_opt' 1 to use syntactic roles (s, o, x, -); 0 to ignore syntactic roles (x, -)
  • 'is_permutation': 'true' if using permuted text files, 'false' if using original text files only

Input: data/[corpus]/grid[_permute]/ files. Output: data/[corpus]/features[_permute]/[feature_set]

python3 extract_features_from_grid.py [corpus] [seq_len] [salience_threshold] [syntax_opt] [is_permutation]

Models

Entity grid

Train a random forest classifier on entity grid features. 'feature_set' specifies the name of the feature directory in data/[corpus]/features[_permute]. 'evaluation' specifies the task: 'class', 'score_pred', 'minority', 'perm'.

python3 entity_grid.py [corpus] [feature_set] [evaluation]

Entity graph

Use entity graph outdegree values to evaluate on different tasks. Must specify graph type: [u, u_dist, w, w_dist, syn, syn_dist].

Thresholds (any real numbers):

  • 'class': must specify 'threshold1' and 'threshold2'
  • 'minority': must specify 'threshold1'
  • 'perm': no threshold
  • 'score_pred': no threshold
python3 entity_graph.py [corpus] [evaluation] [graph_type] [opt:threshold1] [opt:threshold2]

Neural clique

Train 3-class classification model on Yahoo data with clique size = 7 sentences:

python3 main.py --model_name yahoo_class_model --train_corpus Yahoo --model_type clique --task class --clique 7

See main.py for other parameters.

Neural SentAvg

Train 3-class classification model on Yahoo data:

python3 main.py --model_name yahoo_class_model --train_corpus Yahoo --model_type sent_avg --task class

See main.py for other parameters.

Note: the SentAvg model cannot be trained for the binary permutation ranking task (because all sentence order permutations have the same score).

Neural ParSeq

Train 3-class classification model on Yahoo data:

python3 main.py --model_name yahoo_class_model --train_corpus Yahoo --model_type par_seq --task class

See main.py for other parameters.

Note: the ParSeq model currently cannot be trained for the binary permutation ranking task.

About

Code for paper "Discourse Coherence in the Wild"

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages