Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Upload summarize performance script from s3transfer. #9170

Closed
Closed
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
324 changes: 324 additions & 0 deletions scripts/performance/summarize.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,324 @@
#!/usr/bin/env python
"""
Summarizes results of benchmarking.

Usage
=====

Run this script with::

./summarize performance.csv


And that should output::

+------------------------+----------+----------------------+
| Metric over 1 run(s) | Mean | Standard Deviation |
+========================+==========+======================+
| Total Time (seconds) | 1.200 | 0.0 |
+------------------------+----------+----------------------+
| Maximum Memory | 42.3 MiB | 0 Bytes |
+------------------------+----------+----------------------+
| Maximum CPU (percent) | 88.1 | 0.0 |
+------------------------+----------+----------------------+
| Average Memory | 33.9 MiB | 0 Bytes |
+------------------------+----------+----------------------+
| Average CPU (percent) | 30.5 | 0.0 |
+------------------------+----------+----------------------+


The script can also be ran with multiple files:

./summarize performance.csv performance-2.csv

And will have a similar output:

+------------------------+----------+----------------------+
| Metric over 2 run(s) | Mean | Standard Deviation |
+========================+==========+======================+
| Total Time (seconds) | 1.155 | 0.0449999570847 |
+------------------------+----------+----------------------+
| Maximum Memory | 42.5 MiB | 110.0 KiB |
+------------------------+----------+----------------------+
| Maximum CPU (percent) | 94.5 | 6.45 |
+------------------------+----------+----------------------+
| Average Memory | 35.6 MiB | 1.7 MiB |
+------------------------+----------+----------------------+
| Average CPU (percent) | 27.5 | 3.03068181818 |
+------------------------+----------+----------------------+


You can also specify the ``--output-format json`` option to print the
summary as JSON instead of a pretty printed table::

{
"total_time": 72.76999998092651,
"std_dev_average_memory": 0.0,
"std_dev_total_time": 0.0,
"average_memory": 56884518.57534247,
"std_dev_average_cpu": 0.0,
"std_dev_max_memory": 0.0,
"average_cpu": 61.19315068493151,
"max_memory": 58331136.0
}

"""

import argparse
import csv
import json
from math import sqrt

from tabulate import tabulate


def human_readable_size(value):
"""Converts integer values in bytes to human readable values"""
hummanize_suffixes = ('KiB', 'MiB', 'GiB', 'TiB', 'PiB', 'EiB')
base = 1024
bytes_int = float(value)

if bytes_int == 1:
return '1 Byte'
elif bytes_int < base:
return '%d Bytes' % bytes_int

for i, suffix in enumerate(hummanize_suffixes):
unit = base ** (i + 2)
if round((bytes_int / unit) * base) < base:
return f'{(base * bytes_int / unit):.1f} {suffix}'


class Summarizer:
DATA_INDEX_IN_ROW = {'time': 0, 'memory': 1, 'cpu': 2}

def __init__(self):
self.total_files = 0
self._num_rows = 0
self._start_time = None
self._end_time = None
self._totals = {
'time': [],
'average_memory': [],
'average_cpu': [],
'max_memory': [],
'max_cpu': [],
}
self._averages = {
'memory': 0.0,
'cpu': 0.0,
}
self._maximums = {'memory': 0.0, 'cpu': 0.0}

@property
def total_time(self):
return self._average_across_all_files('time')

@property
def max_cpu(self):
return self._average_across_all_files('max_cpu')

@property
def max_memory(self):
return self._average_across_all_files('max_memory')

@property
def average_cpu(self):
return self._average_across_all_files('average_cpu')

@property
def average_memory(self):
return self._average_across_all_files('average_memory')

@property
def std_dev_total_time(self):
return self._standard_deviation_across_all_files('time')

@property
def std_dev_max_cpu(self):
return self._standard_deviation_across_all_files('max_cpu')

@property
def std_dev_max_memory(self):
return self._standard_deviation_across_all_files('max_memory')

@property
def std_dev_average_cpu(self):
return self._standard_deviation_across_all_files('average_cpu')

@property
def std_dev_average_memory(self):
return self._standard_deviation_across_all_files('average_memory')

def _average_across_all_files(self, name):
return sum(self._totals[name]) / len(self._totals[name])

def _standard_deviation_across_all_files(self, name):
mean = self._average_across_all_files(name)
differences = [total - mean for total in self._totals[name]]
sq_differences = [difference**2 for difference in differences]
return sqrt(sum(sq_differences) / len(self._totals[name]))

def summarize_as_table(self):
"""Formats the processed data as pretty printed table.

:return: str of formatted table
"""
h = human_readable_size
table = [
[
'Total Time (seconds)',
f'{self.total_time:.3f}',
self.std_dev_total_time,
],
['Maximum Memory', h(self.max_memory), h(self.std_dev_max_memory)],
[
'Maximum CPU (percent)',
f'{self.max_cpu:.1f}',
self.std_dev_max_cpu,
],
[
'Average Memory',
h(self.average_memory),
h(self.std_dev_average_memory),
],
[
'Average CPU (percent)',
f'{self.average_cpu:.1f}',
self.std_dev_average_cpu,
],
]
return tabulate(
table,
headers=[
f'Metric over {self.total_files} run(s)',
'Mean',
'Standard Deviation',
],
tablefmt="grid",
)

def summarize_as_json(self):
"""Return JSON summary of processed data.

:return: str of formatted JSON
"""
return json.dumps(
{
'total_time': self.total_time,
'std_dev_total_time': self.std_dev_total_time,
'max_memory': self.max_memory,
'std_dev_max_memory': self.std_dev_max_memory,
'average_memory': self.average_memory,
'std_dev_average_memory': self.std_dev_average_memory,
'average_cpu': self.average_cpu,
'std_dev_average_cpu': self.std_dev_average_cpu,
},
indent=2,
)

def process(self, args):
"""Processes the data from the CSV file"""
for benchmark_file in args.benchmark_files:
self.process_individual_file(benchmark_file)
self.total_files += 1

def process_individual_file(self, benchmark_file):
with open(benchmark_file) as f:
reader = csv.reader(f)
# Process each row from the CSV file
row = None
for row in reader:
self._validate_row(row, benchmark_file)
self.process_data_row(row)
self._validate_row(row, benchmark_file)
self._end_time = self._get_time(row)
self._finalize_processed_data_for_file()

def _validate_row(self, row, filename):
if not row:
raise RuntimeError(
f'Row: {row} could not be processed. The CSV file ({filename}) may be '
'empty.'
)

def process_data_row(self, row):
# If the row is the first row collect the start time.
if self._num_rows == 0:
self._start_time = self._get_time(row)
self._num_rows += 1
self.process_data_point(row, 'memory')
self.process_data_point(row, 'cpu')

def process_data_point(self, row, name):
# Determine where in the CSV row the requested data is located.
index = self.DATA_INDEX_IN_ROW[name]
# Get the data point.
data_point = float(row[index])
self._add_to_average(name, data_point)
self._account_for_maximum(name, data_point)

def _finalize_processed_data_for_file(self):
# Add numbers to the total, which keeps track of data over
# all files provided.
self._totals['time'].append(self._end_time - self._start_time)
self._totals['max_cpu'].append(self._maximums['cpu'])
self._totals['max_memory'].append(self._maximums['memory'])
self._totals['average_cpu'].append(
self._averages['cpu'] / self._num_rows
)
self._totals['average_memory'].append(
self._averages['memory'] / self._num_rows
)

# Reset some of the data needed to be tracked for each specific
# file.
self._num_rows = 0
self._maximums = self._maximums.fromkeys(self._maximums, 0.0)
self._averages = self._averages.fromkeys(self._averages, 0.0)

def _get_time(self, row):
return float(row[self.DATA_INDEX_IN_ROW['time']])

def _add_to_average(self, name, data_point):
self._averages[name] += data_point

def _account_for_maximum(self, name, data_point):
if data_point > self._maximums[name]:
self._maximums[name] = data_point


def main():
parser = argparse.ArgumentParser(usage=__doc__)
parser.add_argument(
'benchmark_files',
nargs='+',
help=(
'The CSV output file from the benchmark script. If you provide'
'more than one of these files, it will give you the average '
'across all of the files for each metric.'
),
)
parser.add_argument(
'-f',
'--output-format',
default='table',
choices=['table', 'json'],
help=(
'Specify what output format to use for displaying results. '
'By default, a pretty printed table is used, but you can also '
'specify "json" to display pretty printed JSON.'
),
)
args = parser.parse_args()
summarizer = Summarizer()
summarizer.process(args)
if args.output_format == 'table':
result = summarizer.summarize_as_table()
else:
result = summarizer.summarize_as_json()
print(result)


if __name__ == '__main__':
main()
Loading