Skip to content

Commit

Permalink
rename budget to max_cost_total
Browse files Browse the repository at this point in the history
  • Loading branch information
Meganton committed Dec 31, 2024
1 parent efd6048 commit a85a6f9
Show file tree
Hide file tree
Showing 27 changed files with 97 additions and 88 deletions.
2 changes: 1 addition & 1 deletion neps/api.py
Original file line number Diff line number Diff line change
Expand Up @@ -416,7 +416,7 @@ def _run_args(
SearcherMapping, searcher_alg, "searcher", as_class=True
)(
pipeline_space=pipeline_space,
budget=max_cost_total, # TODO: use max_cost_total everywhere
max_cost_total=max_cost_total, # TODO: use max_cost_total everywhere
**searcher_config,
)

Expand Down
8 changes: 4 additions & 4 deletions neps/optimizers/base_optimizer.py
Original file line number Diff line number Diff line change
Expand Up @@ -89,7 +89,7 @@ def __init__(
pipeline_space: SearchSpace,
patience: int = 50,
logger: logging.Logger | None = None,
budget: int | float | None = None,
max_cost_total: int | float | None = None,
objective_to_minimize_value_on_error: float | None = None,
cost_value_on_error: float | None = None,
learning_curve_on_error: float | list[float] | None = None,
Expand All @@ -98,7 +98,7 @@ def __init__(
if patience < 1:
raise ValueError("Patience should be at least 1")

self.budget = budget
self.max_cost_total = max_cost_total
self.pipeline_space = pipeline_space
self.patience = patience
self.logger = logger or logging.getLogger("neps")
Expand All @@ -111,13 +111,13 @@ def __init__(
def ask(
self,
trials: Mapping[str, Trial],
budget_info: BudgetInfo | None,
max_cost_total_info: BudgetInfo | None,
) -> SampledConfig:
"""Sample a new configuration.
Args:
trials: All of the trials that are known about.
budget_info: information about the budget
max_cost_total_info: information about the max_cost_total
Returns:
SampledConfig: a sampled configuration
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -41,14 +41,14 @@ def apply_cost_cooling(
def cost_cooled_acq(
acq_fn: AcquisitionFunction,
model: GPyTorchModel,
used_budget_percentage: float,
used_max_cost_total_percentage: float,
) -> WeightedAcquisition:
assert 0 <= used_budget_percentage <= 1
assert 0 <= used_max_cost_total_percentage <= 1
return WeightedAcquisition(
acq=acq_fn,
apply_weight=partial(
apply_cost_cooling,
cost_model=model,
alpha=1 - used_budget_percentage,
alpha=1 - used_max_cost_total_percentage,
),
)
4 changes: 2 additions & 2 deletions neps/optimizers/bayesian_optimization/models/ftpfn.py
Original file line number Diff line number Diff line change
Expand Up @@ -164,7 +164,7 @@ def encode_ftpfn(
device=device,
dtype=dtype,
)
train_budgets = budget_domain.cast(
train_max_cost_total = budget_domain.cast(
train_fidelities, frm=space.fidelity.domain, dtype=dtype
)

Expand Down Expand Up @@ -192,7 +192,7 @@ def encode_ftpfn(
)
maximize_ys = 1 - minimize_ys
x_train = torch.cat(
[ids.unsqueeze(1), train_budgets.unsqueeze(1), train_configs], dim=1
[ids.unsqueeze(1), train_max_cost_total.unsqueeze(1), train_configs], dim=1
)
return x_train, maximize_ys

Expand Down
2 changes: 1 addition & 1 deletion neps/optimizers/bayesian_optimization/models/gp.py
Original file line number Diff line number Diff line change
Expand Up @@ -401,7 +401,7 @@ def fit_and_acquire_from_gp(
acquisition = cost_cooled_acq(
acq_fn=acquisition,
model=cost_gp,
used_budget_percentage=cost_percentage_used,
used_max_cost_total_percentage=cost_percentage_used,
)

_n = n_candidates_required if n_candidates_required is not None else 1
Expand Down
12 changes: 7 additions & 5 deletions neps/optimizers/bayesian_optimization/optimizer.py
Original file line number Diff line number Diff line change
Expand Up @@ -69,7 +69,7 @@ def __init__(
device: torch.device | None = None,
encoder: ConfigEncoder | None = None,
seed: int | None = None,
budget: Any | None = None, # TODO: remove
max_cost_total: Any | None = None, # TODO: remove
surrogate_model: Any | None = None, # TODO: remove
objective_to_minimize_value_on_error: Any | None = None, # TODO: remove
cost_value_on_error: Any | None = None, # TODO: remove
Expand Down Expand Up @@ -134,7 +134,7 @@ def __init__(
def ask(
self,
trials: Mapping[str, Trial],
budget_info: BudgetInfo | None = None,
max_cost_total_info: BudgetInfo | None = None,
) -> SampledConfig:
n_sampled = len(trials)
config_id = str(n_sampled + 1)
Expand Down Expand Up @@ -164,14 +164,16 @@ def ask(

cost_percent = None
if self.use_cost:
if budget_info is None:
if max_cost_total_info is None:
raise ValueError(
"Must provide a 'cost' to configurations if using cost"
" with BayesianOptimization."
)
if budget_info.max_cost_budget is None:
if max_cost_total_info.max_cost_total is None:
raise ValueError("Cost budget must be set if using cost")
cost_percent = budget_info.used_cost_budget / budget_info.max_cost_budget
cost_percent = (
max_cost_total_info.used_cost_budget / max_cost_total_info.max_cost_total
)

# If we should use the prior, weight the acquisition function by
# the probability of it being sampled from the prior.
Expand Down
2 changes: 1 addition & 1 deletion neps/optimizers/grid_search/optimizer.py
Original file line number Diff line number Diff line change
Expand Up @@ -97,7 +97,7 @@ def __init__(self, pipeline_space: SearchSpace, seed: int | None = None):

@override
def ask(
self, trials: Mapping[str, Trial], budget_info: BudgetInfo | None
self, trials: Mapping[str, Trial], max_cost_total_info: BudgetInfo | None
) -> SampledConfig:
_num_previous_configs = len(trials)
if _num_previous_configs > len(self.configs_list) - 1:
Expand Down
26 changes: 13 additions & 13 deletions neps/optimizers/multi_fidelity/hyperband.py
Original file line number Diff line number Diff line change
Expand Up @@ -47,7 +47,7 @@ def __init__(
self,
*,
pipeline_space: SearchSpace,
budget: int,
max_cost_total: int,
eta: int = 3,
initial_design_type: Literal["max_budget", "unique_configs"] = "max_budget",
use_priors: bool = False,
Expand All @@ -63,7 +63,7 @@ def __init__(
):
args = {
"pipeline_space": pipeline_space,
"budget": budget,
"max_cost_total": max_cost_total,
"eta": eta,
"early_stopping_rate": self.early_stopping_rate, # HB subsumes this from SH
"initial_design_type": initial_design_type,
Expand Down Expand Up @@ -125,7 +125,7 @@ def _handle_promotions(self) -> None:
def ask(
self,
trials: Mapping[str, Trial],
budget_info: BudgetInfo | None,
max_cost_total_info: BudgetInfo | None,
) -> SampledConfig:
completed: dict[str, ConfigResult] = {
trial_id: trial.into_config_result(self.pipeline_space.from_dict)
Expand Down Expand Up @@ -273,7 +273,7 @@ def __init__(
self,
*,
pipeline_space: SearchSpace,
budget: int,
max_cost_total: int,
eta: int = 3,
initial_design_type: Literal["max_budget", "unique_configs"] = "max_budget",
sampling_policy: Any = FixedPriorPolicy,
Expand All @@ -288,7 +288,7 @@ def __init__(
):
super().__init__(
pipeline_space=pipeline_space,
budget=budget,
max_cost_total=max_cost_total,
eta=eta,
initial_design_type=initial_design_type,
use_priors=self.use_priors, # key change to the base HB class
Expand All @@ -311,7 +311,7 @@ def __init__(
self,
*,
pipeline_space: SearchSpace,
budget: int,
max_cost_total: int,
eta: int = 3,
initial_design_type: Literal["max_budget", "unique_configs"] = "max_budget",
sampling_policy: Any = EnsemblePolicy,
Expand All @@ -326,7 +326,7 @@ def __init__(
):
super().__init__(
pipeline_space=pipeline_space,
budget=budget,
max_cost_total=max_cost_total,
eta=eta,
initial_design_type=initial_design_type,
sampling_policy=sampling_policy,
Expand Down Expand Up @@ -361,7 +361,7 @@ def __init__(
self,
*,
pipeline_space: SearchSpace,
budget: int,
max_cost_total: int,
eta: int = 3,
initial_design_type: Literal["max_budget", "unique_configs"] = "max_budget",
use_priors: bool = False,
Expand All @@ -377,7 +377,7 @@ def __init__(
):
args = {
"pipeline_space": pipeline_space,
"budget": budget,
"max_cost_total": max_cost_total,
"eta": eta,
"initial_design_type": initial_design_type,
"use_priors": use_priors,
Expand Down Expand Up @@ -456,7 +456,7 @@ def __init__(
self,
*,
pipeline_space: SearchSpace,
budget: int,
max_cost_total: int,
eta: int = 3,
initial_design_type: Literal["max_budget", "unique_configs"] = "max_budget",
sampling_policy: Any = FixedPriorPolicy,
Expand All @@ -471,7 +471,7 @@ def __init__(
):
super().__init__(
pipeline_space=pipeline_space,
budget=budget,
max_cost_total=max_cost_total,
eta=eta,
initial_design_type=initial_design_type,
use_priors=self.use_priors, # key change to the base Async HB class
Expand All @@ -495,7 +495,7 @@ def __init__(
self,
*,
pipeline_space: SearchSpace,
budget: int,
max_cost_total: int,
eta: int = 3,
initial_design_type: Literal["max_budget", "unique_configs"] = "max_budget",
use_priors: bool = False,
Expand All @@ -520,7 +520,7 @@ def __init__(
):
hb_args = {
"pipeline_space": pipeline_space,
"budget": budget,
"max_cost_total": max_cost_total,
"eta": eta,
"initial_design_type": initial_design_type,
"use_priors": use_priors,
Expand Down
4 changes: 2 additions & 2 deletions neps/optimizers/multi_fidelity/ifbo.py
Original file line number Diff line number Diff line change
Expand Up @@ -98,7 +98,7 @@ def __init__(
initial_design_size: int | Literal["ndim"] = "ndim",
n_acquisition_new_configs: int = 1_000,
device: torch.device | None = None,
budget: int | float | None = None, # TODO: Remove
max_cost_total: int | float | None = None, # TODO: Remove
objective_to_minimize_value_on_error: float | None = None, # TODO: Remove
cost_value_on_error: float | None = None, # TODO: Remove
ignore_errors: bool = False, # TODO: Remove
Expand Down Expand Up @@ -171,7 +171,7 @@ def __init__(
def ask(
self,
trials: Mapping[str, Trial],
budget_info: BudgetInfo | None = None,
max_cost_total_info: BudgetInfo | None = None,
) -> SampledConfig:
ids = [int(config_id.split("_", maxsplit=1)[0]) for config_id in trials]
new_id = max(ids) + 1 if len(ids) > 0 else 0
Expand Down
26 changes: 13 additions & 13 deletions neps/optimizers/multi_fidelity/successive_halving.py
Original file line number Diff line number Diff line change
Expand Up @@ -49,7 +49,7 @@ def __init__(
self,
*,
pipeline_space: SearchSpace,
budget: int | None = None,
max_cost_total: int | None = None,
eta: int = 3,
early_stopping_rate: int = 0,
initial_design_type: Literal["max_budget", "unique_configs"] = "max_budget",
Expand All @@ -68,7 +68,7 @@ def __init__(
Args:
pipeline_space: Space in which to search
budget: Maximum budget
max_cost_total: Maximum budget
eta: The reduction factor used by SH
early_stopping_rate: Determines the number of rungs in an SH bracket
Choosing 0 creates maximal rungs given the fidelity bounds
Expand All @@ -94,7 +94,7 @@ def __init__(
"""
super().__init__(
pipeline_space=pipeline_space,
budget=budget,
max_cost_total=max_cost_total,
objective_to_minimize_value_on_error=objective_to_minimize_value_on_error,
cost_value_on_error=cost_value_on_error,
ignore_errors=ignore_errors,
Expand Down Expand Up @@ -320,7 +320,7 @@ def _fit_models(self) -> None:
def ask(
self,
trials: Mapping[str, Trial],
budget_info: BudgetInfo | None,
max_cost_total_info: BudgetInfo | None,
) -> SampledConfig:
"""This is basically the fit method."""
completed: dict[str, ConfigResult] = {
Expand Down Expand Up @@ -489,13 +489,13 @@ def _enhance_priors(self, confidence_score: dict[str, float] | None = None) -> N

class SuccessiveHalving(SuccessiveHalvingBase):
def _calc_budget_used_in_bracket(self, config_history: list[int]) -> int:
budget = 0
max_cost_total = 0
for rung in self.config_map:
count = sum(config_history == rung)
# `range(min_rung, rung+1)` counts the black-box cost of promotions since
# SH budgets assume each promotion involves evaluation from scratch
budget += count * sum(np.arange(self.min_rung, rung + 1))
return budget
max_cost_total += count * sum(np.arange(self.min_rung, rung + 1))
return max_cost_total

def clear_old_brackets(self) -> None:
"""Enforces reset at each new bracket.
Expand Down Expand Up @@ -559,7 +559,7 @@ def __init__(
self,
*,
pipeline_space: SearchSpace,
budget: int,
max_cost_total: int,
eta: int = 3,
early_stopping_rate: int = 0,
initial_design_type: Literal["max_budget", "unique_configs"] = "max_budget",
Expand All @@ -575,7 +575,7 @@ def __init__(
):
super().__init__(
pipeline_space=pipeline_space,
budget=budget,
max_cost_total=max_cost_total,
eta=eta,
early_stopping_rate=early_stopping_rate,
initial_design_type=initial_design_type,
Expand All @@ -599,7 +599,7 @@ def __init__(
self,
*,
pipeline_space: SearchSpace,
budget: int,
max_cost_total: int,
eta: int = 3,
early_stopping_rate: int = 0,
initial_design_type: Literal["max_budget", "unique_configs"] = "max_budget",
Expand All @@ -616,7 +616,7 @@ def __init__(
):
super().__init__(
pipeline_space=pipeline_space,
budget=budget,
max_cost_total=max_cost_total,
eta=eta,
early_stopping_rate=early_stopping_rate,
initial_design_type=initial_design_type,
Expand All @@ -642,7 +642,7 @@ def __init__(
self,
*,
pipeline_space: SearchSpace,
budget: int,
max_cost_total: int,
eta: int = 3,
early_stopping_rate: int = 0,
initial_design_type: Literal["max_budget", "unique_configs"] = "max_budget",
Expand All @@ -658,7 +658,7 @@ def __init__(
):
super().__init__(
pipeline_space=pipeline_space,
budget=budget,
max_cost_total=max_cost_total,
eta=eta,
early_stopping_rate=early_stopping_rate,
initial_design_type=initial_design_type,
Expand Down
Loading

0 comments on commit a85a6f9

Please sign in to comment.