Skip to content

Commit

Permalink
Bug fixing
Browse files Browse the repository at this point in the history
  • Loading branch information
daphne12345 committed Aug 29, 2024
1 parent e1118a1 commit 3212f2f
Showing 1 changed file with 4 additions and 4 deletions.
8 changes: 4 additions & 4 deletions deepcave/evaluators/mo_fanova.py
Original file line number Diff line number Diff line change
Expand Up @@ -68,7 +68,6 @@ def get_weightings(self, objectives_normed: List[str], df: pd.DataFrame) -> np.n
weightings : numpy.ndarray
The weightings.
"""
print(df[objectives_normed])
optimized = self.is_pareto_efficient(df[objectives_normed].to_numpy())
return (
df[optimized][objectives_normed]
Expand Down Expand Up @@ -137,7 +136,7 @@ def calculate(
df = self.run.get_encoded_data(
objectives, budget, specific=True, include_combined_cost=True
)
X = df[self.hp_names].to_numpy()


# normalize objectives
objectives_normed = list()
Expand All @@ -147,10 +146,11 @@ def calculate(
df[obj.name].max() - df[obj.name].min()
)
objectives_normed.append(normed)

df_all = pd.DataFrame([])
df = df.dropna(subset=objectives_normed)
X = df[self.hp_names].to_numpy()
weightings = self.get_weightings(objectives_normed, df)
print(weightings)
df_all = pd.DataFrame([])

# calculate importance for each weighting generated from the pareto efficient points
for w in weightings:
Expand Down

0 comments on commit 3212f2f

Please sign in to comment.