Skip to content

audreyntep/e2_retinal_oct

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

31 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

RetinAI web application - MedTech by Audrey Ntep

Retinal Diagnosis by Image-Based Deep Learning

Windows configuration

1. Install dependencies

pip install requirements.txt

2. Launch flask local server with Powershell

$env:FLASK_APP = "main"

flask run

3. Access web app with navigator

GET http://127.0.0.1:5000/

  1. First browse local directory to select one or many OCT images (PNG or JPEG extension only), open

  2. Then click "Upload" button, to load images on web server, images are loaded on the left side of the page,

  3. Finally click "Diagnose" button to get results :

    • CNV and DME retinas are red

    • Drusen retina is orange

    • Normal retina is green

4. Consumming API

Endpoint Method Result
/diagnosis POST JSON prediction
/model GET JSON model
/metrics GET JSON metrics
/classes GET JSON classses

5. Data storage

OCT image files are temporary stored in web app server directory : '/static/oct_image'

OCT image files are temporary stored in api server directory : '/data'

Directories are cleared when server is shut down.

About

L'IA aide au diagnostic de maladies rétiniennes

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages