forked from ratschlab/RGAN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
eICU_synthetic_dataset_generation.py
258 lines (206 loc) · 11.2 KB
/
eICU_synthetic_dataset_generation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
import data_utils
import pandas as pd
import numpy as np
import tensorflow as tf
import math, random, itertools
import pickle
import time
import json
import os
import math
from data_utils import get_eICU_with_targets
import plotting
import model
# function for getting one mini batch
def get_batch(samples, labels, batch_size, batch_idx):
start_pos = batch_idx * batch_size
end_pos = start_pos + batch_size
return samples[start_pos:end_pos], labels[start_pos:end_pos]
# directory where the data will be saved
wd = './synthetic_eICU_datasets'
if not os.path.isdir(wd):
os.mkdir(wd)
# runs the experiment 5 times
identifiers = ['eICU_cdgan_synthetic_dataset_r' + str(i) for i in range(2,5)]
for identifier in identifiers:
# reset tensorflow graph
tf.reset_default_graph()
print ("loading data...")
samples, labels = data_utils.eICU_task()
train_seqs = samples['train'].reshape(-1,16,4)
vali_seqs = samples['vali'].reshape(-1,16,4)
test_seqs = samples['test'].reshape(-1,16,4)
train_targets = labels['train']
vali_targets = labels['vali']
test_targets = labels['test']
train_seqs, vali_seqs, test_seqs = data_utils.scale_data(train_seqs, vali_seqs, test_seqs)
print ("data loaded.")
#training config
lr = 0.1
batch_size = 28
num_epochs = 1005
D_rounds = 1 # number of rounds of discriminator training
G_rounds = 3 # number of rounds of generator training
use_time = False # use one latent dimension as time
print(identifier)
seq_length = train_seqs.shape[1]
num_generated_features = train_seqs.shape[2]
hidden_units_d = 100
hidden_units_g = 100
latent_dim = 10 # dimension of the random latent space
cond_dim = train_targets.shape[1] # dimension of the condition
CG = tf.placeholder(tf.float32, [batch_size, train_targets.shape[1]])
CD = tf.placeholder(tf.float32, [batch_size, train_targets.shape[1]])
Z = tf.placeholder(tf.float32, [batch_size, seq_length, latent_dim])
W_out_G = tf.Variable(tf.truncated_normal([hidden_units_g, num_generated_features]))
b_out_G = tf.Variable(tf.truncated_normal([num_generated_features]))
X = tf.placeholder(tf.float32, [batch_size, seq_length, num_generated_features])
W_out_D = tf.Variable(tf.truncated_normal([hidden_units_d,1]))
b_out_D = tf.Variable(tf.truncated_normal([1]))
def sample_Z(batch_size, seq_length, latent_dim, use_time=False, use_noisy_time=False):
sample = np.random.normal(size=[batch_size, seq_length, latent_dim])
if use_noisy_time or use_time:
# time grid is time_grid_mult times larger than seq_length
time_grid_mult = 5
time_grid = (np.arange(seq_length*time_grid_mult)/((seq_length*time_grid_mult)/2)) - 1
time_axes = []
for i in range(batch_size):
# randomly chose a starting point in the time grid
starting_point = random.choice(np.arange(len(time_grid))[:-seq_length])
time_axis = time_grid[starting_point:starting_point+seq_length]
if use_noisy_time:
time_axis += np.random.normal(scale=2.0/len(time_axis), size=len(time_axis))
time_axes.append(time_axis)
sample[:,:,0] = time_axes
return sample
def generator(z, c):
with tf.variable_scope("generator") as scope:
# each step of the generator takes a random seed + the conditional embedding
repeated_encoding = tf.tile(c, [1, tf.shape(z)[1]])
repeated_encoding = tf.reshape(repeated_encoding, [tf.shape(z)[0], tf.shape(z)[1],
cond_dim])
generator_input = tf.concat([repeated_encoding, z], 2)
cell = tf.contrib.rnn.LSTMCell(num_units=hidden_units_g, state_is_tuple=True)
rnn_outputs, rnn_states = tf.nn.dynamic_rnn(
cell=cell,
dtype=tf.float32,
sequence_length=[seq_length]*batch_size,
inputs=generator_input)
rnn_outputs_2d = tf.reshape(rnn_outputs, [-1, hidden_units_g])
logits_2d = tf.matmul(rnn_outputs_2d, W_out_G) + b_out_G
output_2d = tf.nn.tanh(logits_2d)
output_3d = tf.reshape(output_2d, [-1, seq_length, num_generated_features])
return output_3d
def discriminator(x, c, reuse=False):
with tf.variable_scope("discriminator") as scope:
# correct?
if reuse:
scope.reuse_variables()
# each step of the generator takes one time step of the signal to evaluate +
# its conditional embedding
repeated_encoding = tf.tile(c, [1, tf.shape(x)[1]])
repeated_encoding = tf.reshape(repeated_encoding, [tf.shape(x)[0], tf.shape(x)[1],
cond_dim])
decoder_input = tf.concat([repeated_encoding, x], 2)
cell = tf.contrib.rnn.LSTMCell(num_units=hidden_units_d, state_is_tuple=True)
rnn_outputs, rnn_states = tf.nn.dynamic_rnn(
cell=cell,
dtype=tf.float32,
inputs=decoder_input)
rnn_outputs_flat = tf.reshape(rnn_outputs, [-1, hidden_units_g])
logits = tf.matmul(rnn_outputs_flat, W_out_D) + b_out_D
output = tf.nn.sigmoid(logits)
return output, logits
G_sample = generator(Z, CG)
D_real, D_logit_real = discriminator(X, CD)
D_fake, D_logit_fake = discriminator(G_sample, CG, reuse=True)
generator_vars = [v for v in tf.trainable_variables() if v.name.startswith('generator')]
discriminator_vars = [v for v in tf.trainable_variables() if v.name.startswith('discriminator')]
D_loss_real = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=D_logit_real,
labels=tf.ones_like(D_logit_real)))
D_loss_fake = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=D_logit_fake,
labels=tf.zeros_like(D_logit_fake)))
D_loss = D_loss_real + D_loss_fake
G_loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=D_logit_fake,
labels=tf.ones_like(D_logit_fake)))
D_solver = tf.train.GradientDescentOptimizer(learning_rate=lr).minimize(D_loss, var_list=discriminator_vars)
G_solver = tf.train.AdamOptimizer().minimize(G_loss, var_list=generator_vars)
sess = tf.Session()
sess.run(tf.global_variables_initializer())
#plot the ouput from the same seed
vis_z = sample_Z(batch_size, seq_length, latent_dim, use_time=use_time)
X_mb_vis, Y_mb_vis = get_batch(train_seqs, train_targets, batch_size, 0)
vis_sample = sess.run(G_sample, feed_dict={Z: vis_z, CG:Y_mb_vis})
plotting.vis_eICU_patients_downsampled(vis_sample, seq_length,
identifier=identifier, idx=0)
# visualise some real samples
vis_real = np.float32(vali_seqs[np.random.choice(len(vali_seqs), size=batch_size), :, :])
plotting.vis_eICU_patients_downsampled(vis_real, seq_length,
identifier=identifier + '_real', idx=0)
trace = open('./experiments/traces/' + identifier + '.trace.txt', 'w')
trace.write('epoch D_loss G_loss time\n')
print('epoch\tD_loss\tG_loss\ttime\n')
t0 = time.time()
def train_generator(batch_idx, offset):
# update the generator
for g in range(G_rounds):
X_mb, Y_mb = get_batch(train_seqs, train_targets, batch_size, batch_idx + g + offset)
_, G_loss_curr = sess.run([G_solver, G_loss],
feed_dict={CG:Y_mb,
Z: sample_Z(batch_size, seq_length, latent_dim, use_time=use_time)})
return G_loss_curr
def train_discriminator(batch_idx, offset):
# update the discriminator
for d in range(D_rounds):
# using same input sequence for both the synthetic data and the real one,
# probably it is not a good idea...
X_mb, Y_mb = get_batch(train_seqs, train_targets, batch_size, batch_idx + d + offset)
_, D_loss_curr = sess.run([D_solver, D_loss],
feed_dict={CD:Y_mb, CG:Y_mb, X:X_mb,
Z: sample_Z(batch_size, seq_length, latent_dim, use_time=use_time)})
return D_loss_curr
for num_epoch in range(num_epochs):
# we use D_rounds + G_rounds batches in each iteration
for batch_idx in range(0, int(len(train_seqs) / batch_size) - (D_rounds + G_rounds), D_rounds + G_rounds):
# we should shuffle the data instead
if num_epoch % 2 == 0:
G_loss_curr = train_generator(batch_idx, 0)
D_loss_curr = train_discriminator(batch_idx, G_rounds)
else:
D_loss_curr = train_discriminator(batch_idx, 0)
G_loss_curr = train_generator(batch_idx, D_rounds)
t = time.time() - t0
print(num_epoch,'\t', D_loss_curr, '\t', G_loss_curr, '\t', t)
# record/visualise
trace.write(str(num_epoch) + ' ' + str(D_loss_curr) + ' ' + str(G_loss_curr) + ' ' + str(t) + '\n')
if num_epoch % 10 == 0:
trace.flush()
vis_sample = sess.run(G_sample, feed_dict={Z: vis_z, CG:Y_mb_vis})
plotting.vis_eICU_patients_downsampled(vis_sample, seq_length, identifier=identifier, idx=num_epoch+1)
# save synthetic data
if num_epoch % 50 == 0:
# generate synthetic dataset
gen_samples = []
labels_gen_samples = []
print(int(len(train_seqs) / batch_size))
for batch_idx in range(int(len(train_seqs) / batch_size)):
X_mb, Y_mb = get_batch(train_seqs, train_targets, batch_size, batch_idx)
z_ = sample_Z(batch_size, seq_length, latent_dim, use_time=use_time)
gen_samples_mb = sess.run(G_sample, feed_dict={Z: z_, CG:Y_mb})
gen_samples.append(gen_samples_mb)
labels_gen_samples.append(Y_mb)
print (batch_idx)
for batch_idx in range(int(len(vali_seqs) / batch_size)):
X_mb, Y_mb = get_batch(vali_seqs, vali_targets, batch_size, batch_idx)
z_ = sample_Z(batch_size, seq_length, latent_dim, use_time=use_time)
gen_samples_mb = sess.run(G_sample, feed_dict={Z: z_, CG:Y_mb})
gen_samples.append(gen_samples_mb)
labels_gen_samples.append(Y_mb)
gen_samples = np.vstack(gen_samples)
labels_gen_samples = np.vstack(labels_gen_samples)
with open(wd + '/samples_' + identifier + '_' + str(num_epoch) + '.pk', 'wb') as f:
pickle.dump(file=f, obj=gen_samples)
with open(wd + '/labels_' + identifier + '_' + str(num_epoch) + '.pk', 'wb') as f:
pickle.dump(file=f, obj=labels_gen_samples)
# save the model used to generate this dataset
model.dump_parameters(identifier + '_' + str(num_epoch), sess)