Skip to content

arnaldoljr/darknet

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Darknet

Darknet is an open source neural network framework written in C and CUDA. It is fast, easy to install, and supports CPU and GPU computation.

For more information see the Darknet project website.

Results - 4K video

YOLO COCO

4K YOLO COCO Object Detection #1

YOLO VOC

4K YOLO COCO Object Detection #1

Tiny YOLO VOC

...

YOLO 9000

...

Webcam Demo!

Try it yourself:

  1. Build darknet
  2. Download weights
  3. Run webcam demos:
./webcam-coco.sh
./webcam-tiny-yolo.sh
./webcam-voc.sh
./webcam-yolo9000.sh

Build darknet

Edit Makefile to enable GPU, CUDNN and OpenCV:

GPU=1
CUDNN=1
OPENCV=1
DEBUG=0

Choose your CUDA architecture, example for GTX980M: (you can check it here CUDA Compute Capability)

ARCH=       -gencode arch=compute_52,code=[sm_52,compute_52]

Run make and you are ready!

Download weights

All weights are available at Darknet project website.

cd weights
wget https://pjreddie.com/media/files/yolo-voc.weights
wget -O yolo-coco.weights https://pjreddie.com/media/files/yolo.weights
wget https://pjreddie.com/media/files/tiny-yolo-voc.weights
wget https://pjreddie.com/media/files/yolo9000.weights

Architectures

YOLO COCO

layer filters size input output
0 conv 32 3 x 3 / 1 608 x 608 x 3 608 x 608 x 32
1 max 2 x 2 / 2 608 x 608 x 32 304 x 304 x 32
2 conv 64 3 x 3 / 1 304 x 304 x 32 304 x 304 x 64
3 max 2 x 2 / 2 304 x 304 x 64 152 x 152 x 64
4 conv 128 3 x 3 / 1 152 x 152 x 64 152 x 152 x 128
5 conv 64 1 x 1 / 1 152 x 152 x 128 152 x 152 x 64
6 conv 128 3 x 3 / 1 152 x 152 x 64 152 x 152 x 128
7 max 2 x 2 / 2 152 x 152 x 128 76 x 76 x 128
8 conv 256 3 x 3 / 1 76 x 76 x 128 76 x 76 x 256
9 conv 128 1 x 1 / 1 76 x 76 x 256 76 x 76 x 128
10 conv 256 3 x 3 / 1 76 x 76 x 128 76 x 76 x 256
11 max 2 x 2 / 2 76 x 76 x 256 38 x 38 x 256
12 conv 512 3 x 3 / 1 38 x 38 x 256 38 x 38 x 512
13 conv 256 1 x 1 / 1 38 x 38 x 512 38 x 38 x 256
14 conv 512 3 x 3 / 1 38 x 38 x 256 38 x 38 x 512
15 conv 256 1 x 1 / 1 38 x 38 x 512 38 x 38 x 256
16 conv 512 3 x 3 / 1 38 x 38 x 256 38 x 38 x 512
17 max 2 x 2 / 2 38 x 38 x 512 19 x 19 x 512
18 conv 1024 3 x 3 / 1 19 x 19 x 512 19 x 19 x1024
19 conv 512 1 x 1 / 1 19 x 19 x1024 19 x 19 x 512
20 conv 1024 3 x 3 / 1 19 x 19 x 512 19 x 19 x1024
21 conv 512 1 x 1 / 1 19 x 19 x1024 19 x 19 x 512
22 conv 1024 3 x 3 / 1 19 x 19 x 512 19 x 19 x1024
23 conv 1024 3 x 3 / 1 19 x 19 x1024 19 x 19 x1024
24 conv 1024 3 x 3 / 1 19 x 19 x1024 19 x 19 x1024
25 route 16
26 conv 64 1 x 1 / 1 38 x 38 x 512 38 x 38 x 64
27 reorg / 2 38 x 38 x 64 19 x 19 x 256
28 route 27 24
29 conv 1024 3 x 3 / 1 19 x 19 x1280 19 x 19 x1024
30 conv 425 1 x 1 / 1 19 x 19 x1024 19 x 19 x 425
31 detection

YOLO VOC

layer filters size input output
0 conv 32 3 x 3 / 1 416 x 416 x 3 416 x 416 x 32
1 max 2 x 2 / 2 416 x 416 x 32 208 x 208 x 32
2 conv 64 3 x 3 / 1 208 x 208 x 32 208 x 208 x 64
3 max 2 x 2 / 2 208 x 208 x 64 104 x 104 x 64
4 conv 128 3 x 3 / 1 104 x 104 x 64 104 x 104 x 128
5 conv 64 1 x 1 / 1 104 x 104 x 128 104 x 104 x 64
6 conv 128 3 x 3 / 1 104 x 104 x 64 104 x 104 x 128
7 max 2 x 2 / 2 104 x 104 x 128 52 x 52 x 128
8 conv 256 3 x 3 / 1 52 x 52 x 128 52 x 52 x 256
9 conv 128 1 x 1 / 1 52 x 52 x 256 52 x 52 x 128
10 conv 256 3 x 3 / 1 52 x 52 x 128 52 x 52 x 256
11 max 2 x 2 / 2 52 x 52 x 256 26 x 26 x 256
12 conv 512 3 x 3 / 1 26 x 26 x 256 26 x 26 x 512
13 conv 256 1 x 1 / 1 26 x 26 x 512 26 x 26 x 256
14 conv 512 3 x 3 / 1 26 x 26 x 256 26 x 26 x 512
15 conv 256 1 x 1 / 1 26 x 26 x 512 26 x 26 x 256
16 conv 512 3 x 3 / 1 26 x 26 x 256 26 x 26 x 512
17 max 2 x 2 / 2 26 x 26 x 512 13 x 13 x 512
18 conv 1024 3 x 3 / 1 13 x 13 x 512 13 x 13 x1024
19 conv 512 1 x 1 / 1 13 x 13 x1024 13 x 13 x 512
20 conv 1024 3 x 3 / 1 13 x 13 x 512 13 x 13 x1024
21 conv 512 1 x 1 / 1 13 x 13 x1024 13 x 13 x 512
22 conv 1024 3 x 3 / 1 13 x 13 x 512 13 x 13 x1024
23 conv 1024 3 x 3 / 1 13 x 13 x1024 13 x 13 x1024
24 conv 1024 3 x 3 / 1 13 x 13 x1024 13 x 13 x1024
25 route 16
26 conv 64 1 x 1 / 1 26 x 26 x 512 26 x 26 x 64
27 reorg / 2 26 x 26 x 64 13 x 13 x 256
28 route 27 24
29 conv 1024 3 x 3 / 1 13 x 13 x1280 13 x 13 x1024
30 conv 125 1 x 1 / 1 13 x 13 x1024 13 x 13 x 125
31 detection

Tiny YOLO VOC

layer filters size input output
0 conv 16 3 x 3 / 1 416 x 416 x 3 416 x 416 x 16
1 max 2 x 2 / 2 416 x 416 x 16 208 x 208 x 16
2 conv 32 3 x 3 / 1 208 x 208 x 16 208 x 208 x 32
3 max 2 x 2 / 2 208 x 208 x 32 104 x 104 x 32
4 conv 64 3 x 3 / 1 104 x 104 x 32 104 x 104 x 64
5 max 2 x 2 / 2 104 x 104 x 64 52 x 52 x 64
6 conv 128 3 x 3 / 1 52 x 52 x 64 52 x 52 x 128
7 max 2 x 2 / 2 52 x 52 x 128 26 x 26 x 128
8 conv 256 3 x 3 / 1 26 x 26 x 128 26 x 26 x 256
9 max 2 x 2 / 2 26 x 26 x 256 13 x 13 x 256
10 conv 512 3 x 3 / 1 13 x 13 x 256 13 x 13 x 512
11 max 2 x 2 / 1 13 x 13 x 512 13 x 13 x 512
12 conv 1024 3 x 3 / 1 13 x 13 x 512 13 x 13 x1024
13 conv 1024 3 x 3 / 1 13 x 13 x1024 13 x 13 x1024
14 conv 125 1 x 1 / 1 13 x 13 x1024 13 x 13 x 125
15 detection

YOLO 9000

layer filters size input output
0 conv 32 3 x 3 / 1 544 x 544 x 3 544 x 544 x 32
1 max 2 x 2 / 2 544 x 544 x 32 272 x 272 x 32
2 conv 64 3 x 3 / 1 272 x 272 x 32 272 x 272 x 64
3 max 2 x 2 / 2 272 x 272 x 64 136 x 136 x 64
4 conv 128 3 x 3 / 1 136 x 136 x 64 136 x 136 x 128
5 conv 64 1 x 1 / 1 136 x 136 x 128 136 x 136 x 64
6 conv 128 3 x 3 / 1 136 x 136 x 64 136 x 136 x 128
7 max 2 x 2 / 2 136 x 136 x 128 68 x 68 x 128
8 conv 256 3 x 3 / 1 68 x 68 x 128 68 x 68 x 256
9 conv 128 1 x 1 / 1 68 x 68 x 256 68 x 68 x 128
10 conv 256 3 x 3 / 1 68 x 68 x 128 68 x 68 x 256
11 max 2 x 2 / 2 68 x 68 x 256 34 x 34 x 256
12 conv 512 3 x 3 / 1 34 x 34 x 256 34 x 34 x 512
13 conv 256 1 x 1 / 1 34 x 34 x 512 34 x 34 x 256
14 conv 512 3 x 3 / 1 34 x 34 x 256 34 x 34 x 512
15 conv 256 1 x 1 / 1 34 x 34 x 512 34 x 34 x 256
16 conv 512 3 x 3 / 1 34 x 34 x 256 34 x 34 x 512
17 max 2 x 2 / 2 34 x 34 x 512 17 x 17 x 512
18 conv 1024 3 x 3 / 1 17 x 17 x 512 17 x 17 x1024
19 conv 512 1 x 1 / 1 17 x 17 x1024 17 x 17 x 512
20 conv 1024 3 x 3 / 1 17 x 17 x 512 17 x 17 x1024
21 conv 512 1 x 1 / 1 17 x 17 x1024 17 x 17 x 512
22 conv 1024 3 x 3 / 1 17 x 17 x 512 17 x 17 x1024
23 conv 28269 1 x 1 / 1 17 x 17 x1024 17 x 17 x28269
24 detection

About

Convolutional Neural Networks

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • C 91.4%
  • Cuda 7.5%
  • Other 1.1%