Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Avoid deeply nested LinearCombinations in EvaluationsVar::interpolate_and_evaluate #145

Merged
merged 3 commits into from
Sep 13, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 3 additions & 0 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -28,6 +28,9 @@

### Bug Fixes

- [\#145](https://github.com/arkworks-rs/r1cs-std/pull/145)
- Avoid deeply nested `LinearCombinations` in `EvaluationsVar::interpolate_and_evaluate` to fix the stack overflow issue when calling `.value()` on the evaluation result.

## 0.4.0

- [\#117](https://github.com/arkworks-rs/r1cs-std/pull/117) Fix result of `precomputed_base_scalar_mul_le` to not discard previous value.
Expand Down
204 changes: 104 additions & 100 deletions src/poly/evaluations/univariate/mod.rs
Original file line number Diff line number Diff line change
Expand Up @@ -158,11 +158,13 @@ impl<F: PrimeField> EvaluationsVar<F> {
.as_ref()
.expect("lagrange interpolator has not been initialized. ");
let lagrange_coeffs = self.compute_lagrange_coefficients(interpolation_point)?;
let mut interpolation: FpVar<F> = FpVar::zero();
for i in 0..lagrange_interpolator.domain_order {
let intermediate = &lagrange_coeffs[i] * &self.evals[i];
interpolation += &intermediate
}

let interpolation = lagrange_coeffs
.iter()
.zip(&self.evals)
.take(lagrange_interpolator.domain_order)
.map(|(coeff, eval)| coeff * eval)
.sum::<FpVar<F>>();

Ok(interpolation)
}
Expand Down Expand Up @@ -208,31 +210,33 @@ impl<F: PrimeField> EvaluationsVar<F> {
let alpha_coset_offset_inv =
interpolation_point.mul_by_inverse_unchecked(&self.domain.offset())?;

// `res` stores the sum of all lagrange polynomials evaluated at alpha
let mut res = FpVar::<F>::zero();

let domain_size = self.domain.size() as usize;
for i in 0..domain_size {
// a'^{-1} where a is the base coset element
let subgroup_point_inv = subgroup_points[(domain_size - i) % domain_size];
debug_assert_eq!(subgroup_points[i] * subgroup_point_inv, F::one());
// alpha * offset^{-1} * a'^{-1} - 1
let lag_denom = &alpha_coset_offset_inv * subgroup_point_inv - F::one();
// lag_denom cannot be zero, so we use `unchecked`.
//
// Proof: lag_denom is zero if and only if alpha * (coset_offset *
// subgroup_point)^{-1} == 1. This can happen only if `alpha` is
// itself in the coset.
//
// Earlier we asserted that `lhs_numerator` is not zero.
// Since `lhs_numerator` is just the vanishing polynomial for the coset
// evaluated at `alpha`, and since this is non-zero, `alpha` is not
// in the coset.
let lag_coeff = lhs.mul_by_inverse_unchecked(&lag_denom)?;

let lag_interpoland = &self.evals[i] * lag_coeff;
res += lag_interpoland
}

// `evals` stores all lagrange polynomials evaluated at alpha
let evals = (0..domain_size)
.map(|i| {
// a'^{-1} where a is the base coset element
let subgroup_point_inv = subgroup_points[(domain_size - i) % domain_size];
debug_assert_eq!(subgroup_points[i] * subgroup_point_inv, F::one());
// alpha * offset^{-1} * a'^{-1} - 1
let lag_denom = &alpha_coset_offset_inv * subgroup_point_inv - F::one();
// lag_denom cannot be zero, so we use `unchecked`.
//
// Proof: lag_denom is zero if and only if alpha * (coset_offset *
// subgroup_point)^{-1} == 1. This can happen only if `alpha` is
// itself in the coset.
//
// Earlier we asserted that `lhs_numerator` is not zero.
// Since `lhs_numerator` is just the vanishing polynomial for the coset
// evaluated at `alpha`, and since this is non-zero, `alpha` is not
// in the coset.
let lag_coeff = lhs.mul_by_inverse_unchecked(&lag_denom)?;

Ok(&self.evals[i] * lag_coeff)
})
.collect::<Result<Vec<_>, _>>()?;

let res = evals.iter().sum();

Ok(res)
}
Expand Down Expand Up @@ -378,87 +382,87 @@ mod tests {

#[test]
fn test_interpolate_constant_offset() {
let mut rng = test_rng();
let poly = DensePolynomial::rand(15, &mut rng);
let gen = Fr::get_root_of_unity(1 << 4).unwrap();
assert_eq!(gen.pow(&[1 << 4]), Fr::one());
let domain = Radix2DomainVar::new(
gen,
4, // 2^4 = 16
FpVar::constant(Fr::rand(&mut rng)),
)
.unwrap();
let mut coset_point = domain.offset().value().unwrap();
let mut oracle_evals = Vec::new();
for _ in 0..(1 << 4) {
oracle_evals.push(poly.evaluate(&coset_point));
coset_point *= gen;
}
let cs = ConstraintSystem::new_ref();
let evaluations_fp: Vec<_> = oracle_evals
.iter()
.map(|x| FpVar::new_input(ns!(cs, "evaluations"), || Ok(x)).unwrap())
.collect();
let evaluations_var = EvaluationsVar::from_vec_and_domain(evaluations_fp, domain, true);

let interpolate_point = Fr::rand(&mut rng);
let interpolate_point_fp =
FpVar::new_input(ns!(cs, "interpolate point"), || Ok(interpolate_point)).unwrap();

let expected = poly.evaluate(&interpolate_point);

let actual = evaluations_var
.interpolate_and_evaluate(&interpolate_point_fp)
.unwrap()
.value()
.unwrap();
for n in [11, 12, 13, 14] {
let mut rng = test_rng();

let poly = DensePolynomial::rand((1 << n) - 1, &mut rng);
let gen = Fr::get_root_of_unity(1 << n).unwrap();
assert_eq!(gen.pow(&[1 << n]), Fr::one());
let domain = Radix2DomainVar::new(gen, n, FpVar::constant(Fr::rand(&mut rng))).unwrap();
let mut coset_point = domain.offset().value().unwrap();
let mut oracle_evals = Vec::new();
for _ in 0..(1 << n) {
oracle_evals.push(poly.evaluate(&coset_point));
coset_point *= gen;
}
let cs = ConstraintSystem::new_ref();
let evaluations_fp: Vec<_> = oracle_evals
.iter()
.map(|x| FpVar::new_input(ns!(cs, "evaluations"), || Ok(x)).unwrap())
.collect();
let evaluations_var = EvaluationsVar::from_vec_and_domain(evaluations_fp, domain, true);

let interpolate_point = Fr::rand(&mut rng);
let interpolate_point_fp =
FpVar::new_input(ns!(cs, "interpolate point"), || Ok(interpolate_point)).unwrap();

let expected = poly.evaluate(&interpolate_point);

let actual = evaluations_var
.interpolate_and_evaluate(&interpolate_point_fp)
.unwrap()
.value()
.unwrap();

assert_eq!(actual, expected);
assert!(cs.is_satisfied().unwrap());
println!("number of constraints: {}", cs.num_constraints())
assert_eq!(actual, expected);
assert!(cs.is_satisfied().unwrap());
println!("number of constraints: {}", cs.num_constraints());
}
}

#[test]
fn test_interpolate_non_constant_offset() {
let mut rng = test_rng();
let poly = DensePolynomial::rand(15, &mut rng);
let gen = Fr::get_root_of_unity(1 << 4).unwrap();
assert_eq!(gen.pow(&[1 << 4]), Fr::one());
let cs = ConstraintSystem::new_ref();
let domain = Radix2DomainVar::new(
gen,
4, // 2^4 = 16
FpVar::new_witness(ns!(cs, "offset"), || Ok(Fr::rand(&mut rng))).unwrap(),
)
.unwrap();
let mut coset_point = domain.offset().value().unwrap();
let mut oracle_evals = Vec::new();
for _ in 0..(1 << 4) {
oracle_evals.push(poly.evaluate(&coset_point));
coset_point *= gen;
}
for n in [11, 12, 13, 14] {
let mut rng = test_rng();
let poly = DensePolynomial::rand((1 << n) - 1, &mut rng);
let gen = Fr::get_root_of_unity(1 << n).unwrap();
assert_eq!(gen.pow(&[1 << n]), Fr::one());
let cs = ConstraintSystem::new_ref();
let domain = Radix2DomainVar::new(
gen,
n,
FpVar::new_witness(ns!(cs, "offset"), || Ok(Fr::rand(&mut rng))).unwrap(),
)
.unwrap();
let mut coset_point = domain.offset().value().unwrap();
let mut oracle_evals = Vec::new();
for _ in 0..(1 << n) {
oracle_evals.push(poly.evaluate(&coset_point));
coset_point *= gen;
}

let evaluations_fp: Vec<_> = oracle_evals
.iter()
.map(|x| FpVar::new_input(ns!(cs, "evaluations"), || Ok(x)).unwrap())
.collect();
let evaluations_var = EvaluationsVar::from_vec_and_domain(evaluations_fp, domain, true);
let evaluations_fp: Vec<_> = oracle_evals
.iter()
.map(|x| FpVar::new_input(ns!(cs, "evaluations"), || Ok(x)).unwrap())
.collect();
let evaluations_var = EvaluationsVar::from_vec_and_domain(evaluations_fp, domain, true);

let interpolate_point = Fr::rand(&mut rng);
let interpolate_point_fp =
FpVar::new_input(ns!(cs, "interpolate point"), || Ok(interpolate_point)).unwrap();
let interpolate_point = Fr::rand(&mut rng);
let interpolate_point_fp =
FpVar::new_input(ns!(cs, "interpolate point"), || Ok(interpolate_point)).unwrap();

let expected = poly.evaluate(&interpolate_point);
let expected = poly.evaluate(&interpolate_point);

let actual = evaluations_var
.interpolate_and_evaluate(&interpolate_point_fp)
.unwrap()
.value()
.unwrap();
let actual = evaluations_var
.interpolate_and_evaluate(&interpolate_point_fp)
.unwrap()
.value()
.unwrap();

assert_eq!(actual, expected);
assert!(cs.is_satisfied().unwrap());
println!("number of constraints: {}", cs.num_constraints())
assert_eq!(actual, expected);
assert!(cs.is_satisfied().unwrap());
println!("number of constraints: {}", cs.num_constraints());
}
}

#[test]
Expand Down
Loading