forked from microsoft/Data-Science-For-Beginners
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
5 changed files
with
163 additions
and
15 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,141 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "markdown", | ||
"source": [ | ||
"# NYC Taxi data in Winter and Summer\r\n", | ||
"\r\n", | ||
"Refer to the [Data dictionary](https://www1.nyc.gov/assets/tlc/downloads/pdf/data_dictionary_trip_records_yellow.pdf) to learn more about the columns that have been provided.\r\n" | ||
], | ||
"metadata": {} | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"source": [ | ||
"#Install the pandas library\r\n", | ||
"!pip install pandas" | ||
], | ||
"outputs": [], | ||
"metadata": { | ||
"scrolled": true | ||
} | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 7, | ||
"source": [ | ||
"import pandas as pd\r\n", | ||
"\r\n", | ||
"path = '../../data/taxi.csv'\r\n", | ||
"\r\n", | ||
"#Load the csv file into a dataframe\r\n", | ||
"df = pd.read_csv(path)\r\n", | ||
"\r\n", | ||
"#Print the dataframe\r\n", | ||
"print(df)\r\n" | ||
], | ||
"outputs": [ | ||
{ | ||
"output_type": "stream", | ||
"name": "stdout", | ||
"text": [ | ||
" VendorID tpep_pickup_datetime tpep_dropoff_datetime passenger_count \\\n", | ||
"0 2.0 2019-07-15 16:27:53 2019-07-15 16:44:21 3.0 \n", | ||
"1 2.0 2019-07-17 20:26:35 2019-07-17 20:40:09 6.0 \n", | ||
"2 2.0 2019-07-06 16:01:08 2019-07-06 16:10:25 1.0 \n", | ||
"3 1.0 2019-07-18 22:32:23 2019-07-18 22:35:08 1.0 \n", | ||
"4 2.0 2019-07-19 14:54:29 2019-07-19 15:19:08 1.0 \n", | ||
".. ... ... ... ... \n", | ||
"195 2.0 2019-01-18 08:42:15 2019-01-18 08:56:57 1.0 \n", | ||
"196 1.0 2019-01-19 04:34:45 2019-01-19 04:43:44 1.0 \n", | ||
"197 2.0 2019-01-05 10:37:39 2019-01-05 10:42:03 1.0 \n", | ||
"198 2.0 2019-01-23 10:36:29 2019-01-23 10:44:34 2.0 \n", | ||
"199 2.0 2019-01-30 06:55:58 2019-01-30 07:07:02 5.0 \n", | ||
"\n", | ||
" trip_distance RatecodeID store_and_fwd_flag PULocationID DOLocationID \\\n", | ||
"0 2.02 1.0 N 186 233 \n", | ||
"1 1.59 1.0 N 141 161 \n", | ||
"2 1.69 1.0 N 246 249 \n", | ||
"3 0.90 1.0 N 229 141 \n", | ||
"4 4.79 1.0 N 237 107 \n", | ||
".. ... ... ... ... ... \n", | ||
"195 1.18 1.0 N 43 237 \n", | ||
"196 2.30 1.0 N 148 234 \n", | ||
"197 0.83 1.0 N 237 263 \n", | ||
"198 1.12 1.0 N 144 113 \n", | ||
"199 2.41 1.0 N 209 107 \n", | ||
"\n", | ||
" payment_type fare_amount extra mta_tax tip_amount tolls_amount \\\n", | ||
"0 1.0 12.0 1.0 0.5 4.08 0.0 \n", | ||
"1 2.0 10.0 0.5 0.5 0.00 0.0 \n", | ||
"2 2.0 8.5 0.0 0.5 0.00 0.0 \n", | ||
"3 1.0 4.5 3.0 0.5 1.65 0.0 \n", | ||
"4 1.0 19.5 0.0 0.5 5.70 0.0 \n", | ||
".. ... ... ... ... ... ... \n", | ||
"195 1.0 10.0 0.0 0.5 2.16 0.0 \n", | ||
"196 1.0 9.5 0.5 0.5 2.15 0.0 \n", | ||
"197 1.0 5.0 0.0 0.5 1.16 0.0 \n", | ||
"198 2.0 7.0 0.0 0.5 0.00 0.0 \n", | ||
"199 1.0 10.5 0.0 0.5 1.00 0.0 \n", | ||
"\n", | ||
" improvement_surcharge total_amount congestion_surcharge \n", | ||
"0 0.3 20.38 2.5 \n", | ||
"1 0.3 13.80 2.5 \n", | ||
"2 0.3 11.80 2.5 \n", | ||
"3 0.3 9.95 2.5 \n", | ||
"4 0.3 28.50 2.5 \n", | ||
".. ... ... ... \n", | ||
"195 0.3 12.96 0.0 \n", | ||
"196 0.3 12.95 0.0 \n", | ||
"197 0.3 6.96 0.0 \n", | ||
"198 0.3 7.80 0.0 \n", | ||
"199 0.3 12.30 0.0 \n", | ||
"\n", | ||
"[200 rows x 18 columns]\n" | ||
] | ||
} | ||
], | ||
"metadata": {} | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"source": [ | ||
"# Use the cells below to do your own Exploratory Data Analysis" | ||
], | ||
"metadata": {} | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"source": [], | ||
"outputs": [], | ||
"metadata": {} | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"name": "python3", | ||
"display_name": "Python 3.9.7 64-bit ('venv': venv)" | ||
}, | ||
"language_info": { | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"pygments_lexer": "ipython3", | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"version": "3.9.7", | ||
"nbconvert_exporter": "python", | ||
"file_extension": ".py" | ||
}, | ||
"name": "04-nyc-taxi-join-weather-in-pandas", | ||
"notebookId": 1709144033725344, | ||
"interpreter": { | ||
"hash": "6b9b57232c4b57163d057191678da2030059e733b8becc68f245de5a75abe84e" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 2 | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters