pyclustering 0.10.1 release
pyclustering 0.10.1 library is a collection of clustering algorithms, oscillatory networks, etc.
GENERAL CHANGES:
-
The library is distributed under
BSD-3-Clause
library.
See: #517 -
C++ pyclustering can be built using CMake.
See: #603 -
Supported dumping and loading for DBSCAN algorithm via
pickle
(Python:pyclustering.cluster.dbscan
).
See: #650 -
Package installer resolves all required dependencies automatically.
See: #647 -
Introduced human-readable error for genetic clustering algorithm in case of non-normalized data (Python:
pyclustering.cluster.ga
).
See: #597 -
Optimized windows implementation
parallel_for
andparallel_for_each
by usingpyclustering::parallel
instead ofPPL
that affects all algorithms which use these functions (C++:pyclustering::parallel
).
See: #642 -
Optimized
parallel_for
algorithm for short cycles that affects all algorithms which useparallel_for
(C++:pyclustering::parallel
).
See: #642 -
Introduced
kstep
parameter forelbow
algorithm to use custom K search steps (Python:pyclustering.cluster.elbow
, C++:pyclustering::cluster::elbow
).
See: #489 -
Introduced
p_step
parameter forparallel_for
function (C++:pyclustering::parallel
).
See: #640 -
Optimized python implementation of K-Medoids algorithm (Python:
pyclustering.cluster.kmedoids
).
See: #526 -
C++ pyclustering CLIQUE interface returns human-readable errors (Python:
pyclustering.cluster.clique
).
See: #635
See: #634 -
Introduced
metric
parameter for X-Means algorithm to use custom metric for clustering (Python:pyclustering.cluster.xmeans
; C++pyclustering::clst::xmeans
).
See: #619 -
Introduced
alpha
andbeta
probabilistic bounds for MNDL splitting criteria for X-Means algorithm (Python:pyclustering.cluster.xmeans
; C++:pyclustering::clst::xmeans
).
See: #624
CORRECTED MAJOR BUGS:
-
Corrected bug with a command
python3 -m pyclustering.tests
that was using the current folder to find tests to run (Python:pyclustering
).
See: #648 -
Corrected bug with Elbow algorithm where
kmax
is not used to calculateK
(Python:pyclustering.cluster.elbow
; C++:pyclustering::clst::elbow
).
See: #639 -
Corrected implementation of K-Medians (PAM) algorithm that is aligned with original algorithm (Python:
pyclustering.cluster.kmedoids
; C++:pyclustering::clst::kmedoids
).
See: #503 -
Corrected literature references that were for K-Medians (PAM) implementation (Python:
pyclustering.cluster.kmedoids
).
See: #572 -
Corrected bug when K-Medoids updates input parameter
initial_medoids
that were provided to the algorithm (Python:pyclustering.cluster.kmedoids
).
See: #630 -
Corrected bug with Euclidean distance when numpy is used (Python:
pyclustering.utils.metric
).
See: #625 -
Corrected bug with Minkowski distance when numpy is used (Python:
pyclustering.utils.metric
).
See: #626 -
Corrected bug with Gower distance when numpy calculation is used and data shape is bigger than 1 (Python:
pyclustering.utils.metric
).
See: #627 -
Corrected MNDL splitting criteria for X-Means algorithm (Python:
pyclustering.cluster.xmeans
; C++:pyclustering::clst::xmeans
).
See: #623