pyclustering 0.10.0.1 release
pyclustering 0.10.0.1 library is a collection of clustering algorithms and methods, oscillatory networks, etc.
GENERAL CHANGES:
-
Metadata of the library is updated.
See: no reference -
Supported command
test
forsetup.py
script (Python:pyclustering
).
See: #607 -
Introduced parameter
random_seed
for algorithms/models to control the seed of the random functionality:kmeans++
,random_center_initializer
,ga
,gmeans
,xmeans
,som
,somsc
,elbow
,silhouette_ksearch
(Python:pyclustering.cluster
; C++:pyclustering.clst
).
See: #578 -
Introduced parameter
k_max
to G-Means algorithm to use it as an optional stop condition for the algorithm (Python:pyclustering.cluster.gmeans
; C++:pyclustering::clst::gmeans
).
See: #602 -
Implemented method
save()
forcluster_visualizer
andcluster_visualizer_multidim
to save visualization to file (Python:pyclustering.cluster
).
See: #601 -
Optimization of CURE algorithm using balanced KD-tree (Python:
pyclustering.cluster.cure
; C++:pyclustering::clst::cure
).
See: #589 -
Optimization of OPTICS algorithm using balanced KD-tree (Python:
pyclustering.cluster.optics
; C++:pyclustering::clst::optics
).
See: #588 -
Optimization of DBSCAN algorithm using balanced KD-tree (Python:
pyclustering.cluster.dbscan
; C++:pyclustering::clst::dbscan
).
See: #587 -
Implemented new optimized balanced KD-tree
kdtree_balanced
(Python:pyclustering.cluster.kdtree
; C++:pyclustering::container::kdtree_balanced
).
See: #379 -
Implemented KD-tree graphical visualizer
kdtree_visualizer
for KD-trees with 2-dimensional data (Python:pyclustering.container.kdtree
).
See: #586 -
Updated interface of each clustering algorithm in C/C++ pyclustering
cluster_data
is substituted by concrete classes (C++pyclustering::clst
).
See: #577
CORRECTED MAJOR BUGS:
-
Bug with wrong data type for
scores
in Silhouette K-search algorithm in case of using C++ (Python:pyclustering.cluster.silhouette
).
See: #606 -
Bug with a random distribution in the random center initializer (Python:
pyclustering.cluster.center_initializer
).
See: #573 -
Bug with incorrect converting Index List and Object List to Labeling when clusters do not contains one or more points from an input data (Python
pyclustering.cluster.encoder
).
See: #596 -
Bug with an exception in case of using user-defined metric for K-Means algorithm (Python
pyclustering.cluster.kmeans
).
See: #600 -
Memory leakage in the interface between python and C++ pyclustering library in case of CURE algorithm usage (C++
pyclustering
).
See: #581