Skip to content

Latest commit

 

History

History
 
 

roneld

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 
 
 

Robust Neural Network Output Enhancement for Active Lane Detection (RONELD)

Input

Input

(Image from https://github.com/czming/RONELD-Lane-Detection/tree/main/example/00000.jpg)

Ailia input shape: (1, 3, 208, 976)

Output

Output

Usage

Automatically downloads the onnx and prototxt files on the first run. It is necessary to be connected to the Internet while downloading.

For the sample image,

$ python3 roneld.py

If you want to specify the input image, put the image path after the --input option.
You can use --savepath option to change the name of the output file to save.

$ python3 roneld.py --input IMAGE_PATH --savepath SAVE_IMAGE_PATH

By adding the --video option, you can input the video.
If you pass 0 as an argument to VIDEO_PATH, you can use the webcam input instead of the video file.

$ python3 roneld.py --video VIDEO_PATH

The default setting is to use the optimized model and weights, but you can also switch to the normal model by using the --normal option.

Reference

RONELD-Lane-Detection

Framework

Pytorch

Model Format

ONNX opset = 11

Netron

erfnet.opt.onnx.prototxt