forked from axinc-ai/ailia-models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
roneld.py
190 lines (147 loc) · 5.28 KB
/
roneld.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import glob
import os
import sys
import time
import cv2
import numpy as np
from roneld_utils import roneld_lane_detection
sys.path.append('../../road_detection/codes-for-lane-detection')
import ailia
from codes_for_lane_detection_utils import (crop_and_resize, postprocess,
preprocess)
# import original modules
sys.path.append('../../util')
# logger
from logging import getLogger
import webcamera_utils
from image_utils import imread # noqa: E402
from model_utils import check_and_download_models
from arg_utils import get_base_parser, get_savepath, update_parser
logger = getLogger(__name__)
os.environ['KMP_DUPLICATE_LIB_OK'] = 'TRUE'
# ======================
# Parameters
# ======================
REMOTE_PATH = 'https://storage.googleapis.com/ailia-models/erfnet/'
IMAGE_PATH = 'input.jpg'
SAVE_IMAGE_PATH = 'output.jpg'
MODEL_LISTS = ['erfnet']
RESIZE_MODE_LISTS = ['padding', 'crop_center', 'crop_bottom']
# ======================
# Arguemnt Parser Config
# ======================
parser = get_base_parser('roneld model', IMAGE_PATH, SAVE_IMAGE_PATH)
parser.add_argument(
'-a', '--arch', metavar='ARCH',
default='erfnet', choices=MODEL_LISTS,
help='model lists: ' + ' | '.join(MODEL_LISTS)
)
parser.add_argument(
'-r', '--resize', metavar='RESIZE',
default='crop_bottom', choices=RESIZE_MODE_LISTS,
help='resize mode lists: ' + ' | '.join(RESIZE_MODE_LISTS)
)
args = update_parser(parser)
WEIGHT_PATH = 'erfnet.opt.onnx'
MODEL_PATH = 'erfnet.opt.onnx.prototxt'
HEIGHT = 208
WIDTH = 976
# ======================
# Main functions
# ======================
def recognize_from_image():
net = ailia.Net(MODEL_PATH, WEIGHT_PATH, env_id=args.env_id)
net.set_input_shape((1, 3, HEIGHT, WIDTH))
prev_lanes = []
prev_curves = np.zeros(10)
curve_mode = False
# input image loop
for image_path in args.input:
# prepare input data
raw_img = imread(image_path)
# preprocess
raw_img = crop_and_resize(raw_img,WIDTH,HEIGHT,args.arch,args.resize)
img = raw_img
img = preprocess(img,args.arch)
# inference
logger.info('Start inference...')
if args.benchmark:
logger.info('BENCHMARK mode')
for i in range(5):
start = int(round(time.time() * 1000))
output, output_exist = net.run(img)
end = int(round(time.time() * 1000))
logger.info(f'\tailia processing time {end - start} ms')
else:
output, output_exist = net.run(img)
output = postprocess(output,args.arch)
lane_images = []
for num in range(4):
lane_image = output[0][num + 1]
lane_image = (lane_image * 255).astype(int)
lane_images.append(lane_image)
# call to roneld and store output for next method call
output_images, prev_lanes, prev_curves, curve_mode = \
roneld_lane_detection(lane_images, prev_lanes, prev_curves, curve_mode=curve_mode,
image=raw_img)
savepath = get_savepath(args.savepath, image_path)
logger.info(f'saved at : {savepath}')
cv2.imwrite(savepath, raw_img)
logger.info('Script finished successfully.')
def recognize_from_video():
# net initialize
net = ailia.Net(MODEL_PATH, WEIGHT_PATH, env_id=args.env_id)
capture = webcamera_utils.get_capture(args.video)
prev_lanes = []
prev_curves = np.zeros(10)
curve_mode = False
# create video writer if savepath is specified as video format
if args.savepath != SAVE_IMAGE_PATH:
writer = webcamera_utils.get_writer(args.savepath, HEIGHT, WIDTH)
else:
writer = None
frame_shown = False
while (True):
ret, frame = capture.read()
if (cv2.waitKey(1) & 0xFF == ord('q')) or not ret:
break
if frame_shown and cv2.getWindowProperty('frame', cv2.WND_PROP_VISIBLE) == 0:
break
# preprocess
frame = crop_and_resize(frame,WIDTH,HEIGHT,args.arch,args.resize)
img = frame
img = preprocess(img,args.arch)
# inference
output, output_exist = net.run(img)
# postprocess
output = postprocess(output,args.arch)
lane_images = []
for num in range(4):
lane_image = output[0][num + 1]
lane_image = (lane_image * 255).astype(int)
lane_images.append(lane_image)
# call to roneld and store output for next method call
output_images, prev_lanes, prev_curves, curve_mode = \
roneld_lane_detection(lane_images, prev_lanes, prev_curves, curve_mode=curve_mode,
image=frame)
cv2.imshow('frame', frame)
frame_shown = True
# save results
if writer is not None:
writer.write(frame)
capture.release()
cv2.destroyAllWindows()
if writer is not None:
writer.release()
logger.info('Script finished successfully.')
def main():
# model files check and download
check_and_download_models(WEIGHT_PATH, MODEL_PATH, REMOTE_PATH)
if args.video is not None:
# video mode
recognize_from_video()
else:
# image mode
recognize_from_image()
if __name__ == '__main__':
main()