Skip to content

Commit

Permalink
Added postfix to prefix
Browse files Browse the repository at this point in the history
  • Loading branch information
KashishJuneja101003 committed Oct 20, 2024
1 parent d086cf7 commit 0ae6b3a
Show file tree
Hide file tree
Showing 2 changed files with 135 additions and 0 deletions.
95 changes: 95 additions & 0 deletions Postfix to Prefix/code.c
Original file line number Diff line number Diff line change
@@ -0,0 +1,95 @@
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>

// Define the maximum size for the stack and expression
#define MAX 100

// Stack structure to store strings (expressions)
struct Stack {
int top;
char* items[MAX];
};

// Function to initialize the stack
void initStack(struct Stack* stack) {
stack->top = -1;
}

// Function to push an item onto the stack
void push(struct Stack* stack, char* str) {
if (stack->top >= MAX - 1) {
printf("Stack overflow\n");
return;
}
stack->items[++(stack->top)] = strdup(str); // strdup duplicates the string
}

// Function to pop an item from the stack
char* pop(struct Stack* stack) {
if (stack->top == -1) {
printf("Stack underflow\n");
return NULL;
}
return stack->items[(stack->top)--];
}

// Function to check if a character is an operator
int isOperator(char ch) {
return (ch == '+' || ch == '-' || ch == '*' || ch == '/' || ch == '^');
}

// Function to convert a Postfix expression to Prefix
void postfixToPrefix(char* postfix) {
struct Stack stack;
initStack(&stack);

int length = strlen(postfix);

// Traverse the Postfix expression from left to right
for (int i = 0; i < length; i++) {
// If the character is an operand, push it onto the stack
if (isalnum(postfix[i])) {
char operand[2] = {postfix[i], '\0'}; // Create a string for the operand
push(&stack, operand);
}
// If the character is an operator
else if (isOperator(postfix[i])) {
// Pop the top two operands from the stack
char* operand1 = pop(&stack);
char* operand2 = pop(&stack);

// Create a new string: (operator + operand2 + operand1)
char* expression = (char*)malloc(strlen(operand1) + strlen(operand2) + 2);
sprintf(expression, "%c%s%s", postfix[i], operand2, operand1);

// Push the resulting expression back onto the stack
push(&stack, expression);

// Free dynamically allocated memory
free(operand1);
free(operand2);
}
}

// The final result is the remaining element in the stack
char* result = pop(&stack);
printf("Prefix Expression: %s\n", result);

// Free the final result memory
free(result);
}

int main() {
char postfix[MAX];

// Input the Postfix expression
printf("Enter a Postfix expression: ");
scanf("%s", postfix);

// Convert and display the Prefix expression
postfixToPrefix(postfix);

return 0;
}
40 changes: 40 additions & 0 deletions Postfix to Prefix/readme.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,40 @@
# Postfix to Prefix Conversion

## Description:
This project provides a tool for converting arithmetic expressions from Postfix notation (Reverse Polish Notation) to Prefix notation (Polish Notation). Postfix notation places operators after their operands, while Prefix notation places operators before their operands. This conversion allows for more intuitive evaluation of expressions and easier parsing in systems that do not rely on operator precedence.

## Problem Definition:
Given an arithmetic expression in Postfix form (e.g., A B + C *), the objective is to convert it to Prefix form (e.g., * + A B C) using an algorithm that handles the structure correctly.

## Key Elements:
- Operands: Variables or numbers.
- Operators: (+, -, *, /, ^).

The output of converting a postfix expression to a prefix expression should:
1. Correctly place operators before their operands.
2. Avoid ambiguity by ensuring operators are placed with the right precedence.

## Algorithm
1. **Initialize a Stack:** Create an empty stack to store the operands and intermediate expressions.
2. **Read the Postfix Expression:** Start reading the postfix expression from left to right.
3. **Process Each Symbol:**
- **If the Symbol is an Operand:**
- Push it onto the stack.
- **If the Symbol is an Operator:**
- Pop the top two operands from the stack. Let’s call them operand1 and operand2.
- Form a new prefix expression in the format: (operator operand2 operand1) (since postfix is reverse, operands are taken in reverse order).
- Push this new string back onto the stack.
4. **Repeat:** Continue this process until all symbols in the postfix expression are processed.
5. **Final Result:** The stack will contain one element at the end, which is the required prefix expression.

## Example
For the Postfix expression: A B + C *
- **Step 1:** A is an operand, push it → Stack: [A]
- **Step 2:** B is an operand, push it → Stack: [A, B]
- **Step 3:** + is an operator, pop B and A, form + A B, push it → Stack: [+ A B]
- **Step 4:** C is an operand, push it → Stack: [+ A B, C]
- **Step 5:** * is an operator, pop C and + A B, form * + A B C, push it → Stack: [* + A B C]
**Final Prefix output:** * + A B C

## Time Complexity
The algorithm performs a single scan of the postfix expression, making it **O(n)** in time complexity, where n is the number of characters in the input expression. Each operand and operator is pushed and popped from the stack at most once, ensuring linear complexity.

0 comments on commit 0ae6b3a

Please sign in to comment.