Skip to content

Commit

Permalink
Create csu_data.py
Browse files Browse the repository at this point in the history
  • Loading branch information
allenanie authored Aug 10, 2018
1 parent 91e3e9c commit e922b28
Showing 1 changed file with 175 additions and 0 deletions.
175 changes: 175 additions & 0 deletions csu_data.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,175 @@
"""
Process top-level SNOMED code
"""

"""
Takes in raw data and preprocess this into good format
for TorchText to train on
"""

import re
import numpy as np

"""
We train without diagnosis, and with multilabel
"""

np.random.seed(1234)

# ======== Split =========
train_size = 0.9

assert (train_size < 1 and train_size > 0)
split_proportions = {
"train": train_size,
"valid": (1 - train_size) / 2,
"test": (1 - train_size) / 2
}
assert (sum([split_proportions[split] for split in split_proportions]) == 1)

print("the data split is: {}".format(split_proportions))

inflating_test_set = True

# maybe not predicting 17 (it's a catch-all disease)

def write_to_tsv(data, file_name, label_list):
# we are translating labels here
with open(file_name, 'wb') as f:
for line in data:
mapped_labels = [str(label_list.index(l)) for l in line[1].split()]
f.write(line[0] + '\t' + " ".join(mapped_labels) + '\n')


def count_freq(list_labels):
dic = {}
for l in list_labels:
if l not in dic:
dic[l] = 1
else:
dic[l] += 1
return dic


def get_most_freq_label(dic):
most_f_l = None
most_f_f = 0.
for l, f in dic.iteritems():
if f > most_f_f:
most_f_l = l
return most_f_l

def collapse_label(labels):
# Note: for SNOMED we no longer take out category 17 (no longer exist)
labels = labels.strip()
# labels = labels.replace('17', '')
list_labels = filter(lambda l: len(l) > 0, labels.split('-'))
# if len(list_labels) == 0:
# list_labels = ['17'] # meaning it only has 17
set_labels = set(list_labels) # remove redundancies
return list(set_labels)

def cleanhtml(raw_html):
cleanr = re.compile('<.*?>')
cleantext = re.sub(cleanr, '', raw_html)
cleantext = re.sub(r'^https?:\/\/.*[\r\n]*', '', cleantext, flags=re.MULTILINE)
return cleantext

# TODO: 2. Preserve things like "Texas A&M", the ampersand in the middle
def preprocess_text(text, no_description):
no_html = cleanhtml(text)
one_white_space = ' '.join(no_html.split())
no_html_entities = re.sub('&[a-z]+;', '', one_white_space)

if no_description:
# delete both diagnosis and discharge status
no_html_entities = no_html_entities.split('Diagnosis:')[0]

return no_html_entities


if __name__ == '__main__':
header = True

examples = []
labels_dist = []
with open("../../data/csu/final_csu_file_snomed", 'r') as f:
for line in f:
if header:
header = False
continue
columns = line.split('\t')
labels = columns[-1]

text = preprocess_text(columns[4], no_description=True)

seq_labels = collapse_label(labels)
labels_dist.extend(seq_labels)
# start from 0, and also join back to " " separation
examples.append([text, " ".join(seq_labels)])

# import matplotlib.pyplot as plt
#
# n, bins, patches = plt.hist(labels_dist, 50, normed=1, facecolor='green', alpha=0.75)
# plt.show()

import csv
with open("../../data/csu/Files_for_parsing/snomed_ICD_mapped.csv", 'r') as f:
csv_reader = csv.reader(f, delimiter=';')
snomed_code_to_name = {}
for row in csv_reader:
snomed_code_to_name[row[0]] = row[1]

labels_dist = count_freq(labels_dist)

print("number of labels is {}".format(len(labels_dist)))

with open("../../data/csu/snomed_dist.csv", 'wb') as f:
for k, v in labels_dist.items():
f.write(snomed_code_to_name[k] + "," + str(v) + "\n")

labels_prob = map(lambda t: (t[0], float(t[1]) / sum(labels_dist.values())), labels_dist.items())

labels_prob = sorted(labels_prob, key=lambda t: t[1])

print "code, n, p"
for k, prob in labels_prob:
print "{}, {}, {}".format(k, labels_dist[k], prob)

label_list = [t[0] for t in labels_prob]

# process them into tsv format, but also collect frequency distribution
serial_numbers = range(len(examples))
np.random.shuffle(serial_numbers)

train_numbers = serial_numbers[:int(np.rint(len(examples) * split_proportions['train']))]
valid_numbers = serial_numbers[
int(np.rint(len(examples) * split_proportions['train'])): \
int(np.rint(len(examples) * (split_proportions['train'] + split_proportions['valid'])))]
test_numbers = serial_numbers[
int(np.rint(len(examples) * (split_proportions['train'] + split_proportions['valid']))):]

print(
"train/valid/test number of examples: {}/{}/{}".format(len(train_numbers), len(valid_numbers),
len(test_numbers)))
train, valid, test = [], [], []

for tn in train_numbers:
train.append(examples[tn])
for tn in valid_numbers:
valid.append(examples[tn])
for tn in test_numbers:
test.append(examples[tn])

write_to_tsv(train, "../../data/csu/snomed_multi_label_no_des_train.tsv", label_list)
write_to_tsv(valid, "../../data/csu/snomed_multi_label_no_des_valid.tsv", label_list)
write_to_tsv(test, "../../data/csu/snomed_multi_label_no_des_test.tsv", label_list)

import json
with open('../../data/csu/snomed_labels.json', 'wb') as f:
json.dump(label_list, f)

names = [snomed_code_to_name[l] for l in label_list]
# index matches 0 to 41
with open('../../data/csu/snomed_labels_to_name.json', 'wb') as f:
json.dump(names, f)

0 comments on commit e922b28

Please sign in to comment.