Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

dhdl plot for the TI #110

Merged
merged 26 commits into from
Oct 2, 2020
Merged
Show file tree
Hide file tree
Changes from 21 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Binary file added docs/images/dhdl_TI.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
40 changes: 40 additions & 0 deletions docs/visualisation.rst
Original file line number Diff line number Diff line change
Expand Up @@ -4,6 +4,14 @@ It is quite often that the user want to visualise the results to gain
confidence on the computed free energy. **alchemlyb** provides various
visualisation tools to help user to judge the estimate.

.. currentmodule:: alchemlyb.visualisation

.. autosummary::
:toctree: visualisation

plot_mbar_overlap_matrix
plot_ti_dhdl

.. _plot_overlap_matrix:

Overlap Matrix of the MBAR
Expand Down Expand Up @@ -34,6 +42,38 @@ Will give a plot looks like this

.. image:: images/O_MBAR.png

.. _plot_TI_dhdl:

dhdl Plot of the TI
-------------------
In order for the :class:`~alchemlyb.estimators.TI` estimator to work reliably,
the change in the dhdl between lambda state 0 and lambda state 1 should be
adequately sampled. The function :func:`~alchemlyb.visualisation.plot_ti_dhdl`
can be used to access the change of the dhdl across the lambda states.

More than one :class:`~alchemlyb.estimators.TI` estimators can be plotted
together as well. ::

>>> import pandas as pd
>>> from alchemtest.gmx import load_benzene
>>> from alchemlyb.parsing.gmx import extract_dHdl
>>> from alchemlyb.estimators import TI

>>> bz = load_benzene().data
>>> dHdl_coul = pd.concat([extract_dHdl(xvg, T=300) for xvg in bz['Coulomb']])
>>> ti_coul = TI().fit(dHdl_coul)
>>> dHdl_vdw = pd.concat([extract_dHdl(xvg, T=300) for xvg in bz['VDW']])
>>> ti_vdw = TI().fit(dHdl_vdw)

>>> from alchemlyb.visualisation import plot_ti_dhdl
>>> ax = plot_ti_dhdl([ti_coul, ti_vdw], labels=['Coul', 'VDW'], colors=['r', 'g'])
>>> ax.figure.savefig('dhdl_TI.pdf')


Will give a plot looks like this

.. image:: images/dhdl_TI.png

.. [Klimovich2015] Klimovich, P.V., Shirts, M.R. & Mobley, D.L. Guidelines for
the analysis of free energy calculations. J Comput Aided Mol Des 29, 397–411
(2015). https://doi.org/10.1007/s10822-015-9840-9
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
.. _plot_overlap:
.. _visualisation_plot_mbar_overlap_matrix:

Plot Overlap Matrix from MBAR
=============================
Expand Down
22 changes: 22 additions & 0 deletions docs/visualisation/alchemlyb.visualisation.plot_ti_dhdl.rst
Original file line number Diff line number Diff line change
@@ -0,0 +1,22 @@
.. _visualisation_plot_mbar_plot_ti_dhdl:

Plot dhdl from TI
=================

The function :func:`~alchemlyb.visualisation.plot_ti_dhdl` allows
the user to plot the dhdl from :class:`~alchemlyb.estimators.TI` estimator.
Several :class:`~alchemlyb.estimators.TI` estimators could be passed to the
function to give a concerted picture of the whole alchemical transformation.
When custom labels are desirable, the user could pass a list of strings to the
*labels* for labelling each alchemical transformation differently. The color of
each alchemical transformation could also be set by passing a list of color
string to the *colors*. The unit in the y axis could be labelled to other units
by setting *units*, which by default is kcal/mol. The user can pass
:class:`matplotlib.axes.Axes` into the function to have the dhdl drawn on a
specific axes.

Please check :ref:`How to plot TI dhdl <plot_TI_dhdl>` for usage.

API Reference
-------------
.. autofunction:: alchemlyb.visualisation.plot_ti_dhdl
3 changes: 0 additions & 3 deletions src/alchemlyb/estimators/mbar_.py
Original file line number Diff line number Diff line change
Expand Up @@ -45,9 +45,6 @@ class MBAR(BaseEstimator):
states_ : list
Lambda states for which free energy differences were obtained.

overlap_matrix: numpy.matrix
The overlap matrix.

"""

def __init__(self, maximum_iterations=10000, relative_tolerance=1.0e-7,
Expand Down
4 changes: 4 additions & 0 deletions src/alchemlyb/estimators/ti_.py
Original file line number Diff line number Diff line change
Expand Up @@ -26,6 +26,9 @@ class TI(BaseEstimator):
states_ : list
Lambda states for which free energy differences were obtained.

dhdl : DataFrame
The estimated dhdl of each state.

"""

def __init__(self, verbose=False):
Expand Down Expand Up @@ -92,6 +95,7 @@ def fit(self, dHdl):
self.delta_f_ = pd.DataFrame(adelta - adelta.T,
columns=means.index.values,
index=means.index.values)
self.dhdl = means

# yield standard deviation d_delta_f_ between each state
self.d_delta_f_ = pd.DataFrame(np.sqrt(ad_delta + ad_delta.T),
Expand Down
33 changes: 31 additions & 2 deletions src/alchemlyb/tests/test_visualisation.py
Original file line number Diff line number Diff line change
@@ -1,10 +1,13 @@
import matplotlib
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np

from alchemtest.gmx import load_benzene
from alchemlyb.parsing.gmx import extract_u_nk
from alchemlyb.estimators import MBAR
from alchemlyb.parsing.gmx import extract_u_nk, extract_dHdl
from alchemlyb.estimators import MBAR, TI
from alchemlyb.visualisation.mbar_matrix import plot_mbar_overlap_matrix
from alchemlyb.visualisation.ti_dhdl import plot_ti_dhdl

def test_plot_mbar_omatrix():
'''Just test if the plot runs'''
Expand All @@ -25,3 +28,29 @@ def test_plot_mbar_omatrix():
assert isinstance(plot_mbar_overlap_matrix(overlap_maxtrix),
matplotlib.axes.Axes)

def test_plot_ti_dhdl():
'''Just test if the plot runs'''
bz = load_benzene().data
dHdl_coul = pd.concat([extract_dHdl(xvg, T=300) for xvg in bz['Coulomb']])
ti_coul = TI()
ti_coul.fit(dHdl_coul)
assert isinstance(plot_ti_dhdl(ti_coul),
matplotlib.axes.Axes)
fig, ax = plt.subplots(figsize=(8, 6))
assert isinstance(plot_ti_dhdl(ti_coul, ax=ax),
matplotlib.axes.Axes)
assert isinstance(plot_ti_dhdl(ti_coul, labels=['Coul']),
matplotlib.axes.Axes)
assert isinstance(plot_ti_dhdl(ti_coul, labels=['Coul'], colors=['r']),
matplotlib.axes.Axes)
dHdl_vdw = pd.concat([extract_dHdl(xvg, T=300) for xvg in bz['VDW']])
ti_vdw = TI().fit(dHdl_vdw)
assert isinstance(plot_ti_dhdl([ti_coul, ti_vdw]),
matplotlib.axes.Axes)
ti_coul.dhdl = pd.DataFrame.from_dict(
{'fep': range(100)},
orient='index',
columns=np.arange(100)/100).T
assert isinstance(plot_ti_dhdl(ti_coul),
matplotlib.axes.Axes)

3 changes: 2 additions & 1 deletion src/alchemlyb/visualisation/__init__.py
Original file line number Diff line number Diff line change
@@ -1 +1,2 @@
from .mbar_matrix import plot_mbar_overlap_matrix
from .mbar_matrix import plot_mbar_overlap_matrix
from .ti_dhdl import plot_ti_dhdl
172 changes: 172 additions & 0 deletions src/alchemlyb/visualisation/ti_dhdl.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,172 @@
"""Functions for Plotting the dhdl for the TI estimator.

To assess the quality of the TI estimator, the dhdl from lambda state 0
to lambda state 1 can plotted to assess if the change in dhdl is sampled
thoroughly.

The code for producing the dhdl plot is modified based on
: `Alchemical Analysis <https://github.com/MobleyLab/alchemical-analysis>`_.

"""
from __future__ import division

import matplotlib.pyplot as plt
from matplotlib.font_manager import FontProperties as FP
import numpy as np

def plot_ti_dhdl(dhdl_data, labels=None, colors=None, units='kcal/mol', ax=None):
'''Plot the dhdl of TI.

Parameters
----------
dhdl_data : :class:`~alchemlyb.estimators.TI` or list
One or more :class:`~alchemlyb.estimators.TI` estimator, where the
dhdl value will be taken from.
labels : List
list of labels for labelling all the alchemical transformations.
colors : List
list of colors for plotting all the alchemical transformations.
Default: ['r', 'g', '#7F38EC', '#9F000F', 'b', 'y']
units : str
The unit of the estimate. Default: 'kcal/mol'
ax : matplotlib.axes.Axes
Matplotlib axes object where the plot will be drawn on. If ax=None,
a new axes will be generated.

Returns
-------
matplotlib.axes.Axes
An axes with the overlap matrix drawn.

Notes
-----
The code is taken and modified from
: `Alchemical Analysis <https://github.com/MobleyLab/alchemical-analysis>`_

'''
# Make it into a list
try:
len(dhdl_data)
except TypeError:
dhdl_data = [dhdl_data, ]

if ax is None:
fig, ax = plt.subplots(figsize=(8, 6))

ax.spines['bottom'].set_position('zero')
ax.spines['top'].set_color('none')
ax.spines['right'].set_color('none')
ax.xaxis.set_ticks_position('bottom')
ax.yaxis.set_ticks_position('left')

for k, spine in ax.spines.items():
spine.set_zorder(12.2)

# Make level names
if labels is None:
lv_names2 = []
for dhdl in dhdl_data:
# Assume that the dhdl has only one columns
lv_names2.append(dhdl.dhdl.columns.values[0].capitalize())
else:
assert len(labels) == len(dhdl_data), \
orbeckst marked this conversation as resolved.
Show resolved Hide resolved
'Length of labels ({}) should be the same as the number of data ({})'.format(len(labels), len(dhdl_data))
lv_names2 = labels

if colors is None:
colors = ['r', 'g', '#7F38EC', '#9F000F', 'b', 'y']
else:
assert len(colors) >= len(dhdl_data), \
orbeckst marked this conversation as resolved.
Show resolved Hide resolved
'Number of colors ({}) should be larger than the number of data ({})'.format(len(labels), len(dhdl_data))
# Get the real data out
xs, ndx, dx = [0], 0, 0.001
min_y, max_y = 0, 0
for dhdl in dhdl_data:
x = dhdl.dhdl.index.values
y = dhdl.dhdl.values.ravel()

min_y = min(y.min(), min_y)
max_y = max(y.max(), max_y)

for i in range(len(x) - 1):
# pl.plot(x,y)
if i % 2 == 0:
ax.fill_between(x[i:i + 2] + ndx, 0, y[i:i + 2],
color=colors[ndx], alpha=1.0)
else:
ax.fill_between(x[i:i + 2] + ndx, 0, y[i:i + 2],
color=colors[ndx], alpha=0.5)

xlegend = [-100 * wnum for wnum in range(len(lv_names2))]
ax.plot(xlegend, [0 * wnum for wnum in xlegend], ls='-',
color=colors[ndx],
label=lv_names2[ndx]) ## for the paper
xs += (x + ndx).tolist()[1:]
ndx += 1
#
#
# min_dl = dlam[dlam != 0].min()
# S = int(0.4 / min_dl)
#
# Make sure the tick labels are not overcrowded.
xs = np.array(xs)
dl_mat = np.array([xs - i for i in xs])
ri = range(len(xs))

def getInd(r=ri, z=[0]):
primo = r[0]
min_dl = ndx * 0.02 * 2 ** (primo > 10)
if dl_mat[primo].max() < min_dl:
return z
for i in r:
for j in range(len(xs)):
if dl_mat[i, j] > min_dl:
z.append(j)
return getInd(ri[j:], z)

xt = []
for i in range(len(xs)):
if i in getInd():
xt.append(i)
else:
xt.append('')

plt.xticks(xs[1:], xt[1:], fontsize=10)
ax.yaxis.label.set_size(10)

# Remove the abscissa ticks and set up the axes limits.
for tick in ax.get_xticklines():
tick.set_visible(False)
ax.set_xlim(0, ndx)
min_y *= 1.01
max_y *= 1.01

# Modified so that the x label won't conflict with the lambda label
min_y -= (max_y-min_y)*0.1

ax.set_ylim(min_y, max_y)

for i, j in zip(xs[1:], xt[1:]):
ax.annotate(
('%.2f' % (i - 1.0 if i > 1.0 else i) if not j == '' else ''),
xy=(i, 0), xytext=(i, 0.01), size=10, rotation=90,
textcoords=('data', 'axes fraction'), va='bottom', ha='center',
color='#151B54')
if ndx > 1:
lenticks = len(ax.get_ymajorticklabels()) - 1
if min_y < 0: lenticks -= 1
if lenticks < 5:
from matplotlib.ticker import AutoMinorLocator as AML
ax.yaxis.set_minor_locator(AML())
ax.grid(which='both', color='w', lw=0.25, axis='y', zorder=12)
ax.set_ylabel(
r'$\mathrm{\langle{\frac{ \partial U } { \partial \lambda }}\rangle_{\lambda}\/%s}$' % units,
fontsize=20, color='#151B54')
ax.annotate('$\mathit{\lambda}$', xy=(0, 0), xytext=(0.5, -0.05), size=18,
textcoords='axes fraction', va='top', ha='center',
color='#151B54')
lege = ax.legend(prop=FP(size=14), frameon=False, loc=1)
for l in lege.legendHandles:
l.set_linewidth(10)
return ax