if __name__ == '__main__':
interpolation = T.InterpolationMode.BILINEAR
ct = ClassificationTransform()
ct.add_random_resized_crop((255, 255)) \
.add_random_horizontal_flip(0.5) \
.add_random_vertical_flip(0.5) \
.add_rand_augment(interpolation=interpolation) \
.add_augmix(interpolation=interpolation) \
.add_auto_augment(interpolation=interpolation) \
.add_color_jitter(0.4, 0.4, 0.7, 0.015) \
.add_to_tensor() \
.add_normalize() \
.add_random_erasing(0.4)
width, height = 416, 416
random_data = np.random.randint(0, 256, (height, width, 3), dtype=np.uint8)
image = Image.fromarray(random_data, 'RGB')
out = ct(image)
if __name__ == '__main__':
dt = DetectionTransform()
dt.add_resize((224, 224)) \
.add_random_hsv() \
.add_random_vertical_flip(0.5) \
.add_random_horizontal_flip(0.5) \
.add_to_tensor() \
.add_normalize()
width, height = 416, 416
image = np.random.randint(0, 256, (height, width, 3), dtype=np.uint8)
label = image
data = (image, label)
output = dt(data)
if __name__ == '__main__':
dt = Segmentation()
dt.add_resize((224, 224)) \
.add_random_hsv() \
.add_random_vertical_flip(0.5) \
.add_random_horizontal_flip(0.5) \
.add_to_tensor() \
.add_normalize()
width, height = 416, 416
image = np.random.randint(0, 256, (height, width, 3), dtype=np.uint8)
label = image
data = (image, label)
output = dt(data)