- [2024.10.25]🎯🎯📢📢We’ve added a Streamlit template for LightRAG.
- [2024.10.20]🎯🎯📢📢We’ve added a new feature to LightRAG: Graph Visualization.
- [2024.10.18]🎯🎯📢📢We’ve added a link to a LightRAG Introduction Video. Thanks to the author!
- [2024.10.17]🎯🎯📢📢We have created a Discord channel! Welcome to join for sharing and discussions! 🎉🎉
- [2024.10.16]🎯🎯📢📢LightRAG now supports Ollama models!
- [2024.10.15]🎯🎯📢📢LightRAG now supports Hugging Face models!
- Install from source (Recommend)
cd LightRAG
pip install -e .
- Install from PyPI
pip install lightrag-hku
- Video demo of running LightRAG locally.
- All the code can be found in the
examples
. - Set OpenAI API key in environment if using OpenAI models:
export OPENAI_API_KEY="sk-...".
- Download the demo text "A Christmas Carol by Charles Dickens":
curl https://raw.githubusercontent.com/gusye1234/nano-graphrag/main/tests/mock_data.txt > ./book.txt
Use the below Python snippet (in a script) to initialize LightRAG and perform queries:
import os
from lightrag import LightRAG, QueryParam
from lightrag.llm import gpt_4o_mini_complete, gpt_4o_complete
#########
# Uncomment the below two lines if running in a jupyter notebook to handle the async nature of rag.insert()
# import nest_asyncio
# nest_asyncio.apply()
#########
WORKING_DIR = "./dickens"
if not os.path.exists(WORKING_DIR):
os.mkdir(WORKING_DIR)
rag = LightRAG(
working_dir=WORKING_DIR,
llm_model_func=gpt_4o_mini_complete # Use gpt_4o_mini_complete LLM model
# llm_model_func=gpt_4o_complete # Optionally, use a stronger model
)
with open("./book.txt") as f:
rag.insert(f.read())
# Perform naive search
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="naive")))
# Perform local search
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="local")))
# Perform global search
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="global")))
# Perform hybrid search
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid")))
Using Open AI-like APIs
- LightRAG also supports Open AI-like chat/embeddings APIs:
async def llm_model_func(
prompt, system_prompt=None, history_messages=[], **kwargs
) -> str:
return await openai_complete_if_cache(
"solar-mini",
prompt,
system_prompt=system_prompt,
history_messages=history_messages,
api_key=os.getenv("UPSTAGE_API_KEY"),
base_url="https://api.upstage.ai/v1/solar",
**kwargs
)
async def embedding_func(texts: list[str]) -> np.ndarray:
return await openai_embedding(
texts,
model="solar-embedding-1-large-query",
api_key=os.getenv("UPSTAGE_API_KEY"),
base_url="https://api.upstage.ai/v1/solar"
)
rag = LightRAG(
working_dir=WORKING_DIR,
llm_model_func=llm_model_func,
embedding_func=EmbeddingFunc(
embedding_dim=4096,
max_token_size=8192,
func=embedding_func
)
)
Using Hugging Face Models
- If you want to use Hugging Face models, you only need to set LightRAG as follows:
from lightrag.llm import hf_model_complete, hf_embedding
from transformers import AutoModel, AutoTokenizer
# Initialize LightRAG with Hugging Face model
rag = LightRAG(
working_dir=WORKING_DIR,
llm_model_func=hf_model_complete, # Use Hugging Face model for text generation
llm_model_name='meta-llama/Llama-3.1-8B-Instruct', # Model name from Hugging Face
# Use Hugging Face embedding function
embedding_func=EmbeddingFunc(
embedding_dim=384,
max_token_size=5000,
func=lambda texts: hf_embedding(
texts,
tokenizer=AutoTokenizer.from_pretrained("sentence-transformers/all-MiniLM-L6-v2"),
embed_model=AutoModel.from_pretrained("sentence-transformers/all-MiniLM-L6-v2")
)
),
)
Using Ollama Models
- If you want to use Ollama models, you only need to set LightRAG as follows:
from lightrag.llm import ollama_model_complete, ollama_embedding
# Initialize LightRAG with Ollama model
rag = LightRAG(
working_dir=WORKING_DIR,
llm_model_func=ollama_model_complete, # Use Ollama model for text generation
llm_model_name='your_model_name', # Your model name
# Use Ollama embedding function
embedding_func=EmbeddingFunc(
embedding_dim=768,
max_token_size=8192,
func=lambda texts: ollama_embedding(
texts,
embed_model="nomic-embed-text"
)
),
)
- Increasing the
num_ctx
parameter:
- Pull the model:
ollama pull qwen2
- Display the model file:
ollama show --modelfile qwen2 > Modelfile
- Edit the Modelfile by adding the following line:
PARAMETER num_ctx 32768
- Create the modified model:
ollama create -f Modelfile qwen2m
class QueryParam:
mode: Literal["local", "global", "hybrid", "naive"] = "global"
only_need_context: bool = False
response_type: str = "Multiple Paragraphs"
# Number of top-k items to retrieve; corresponds to entities in "local" mode and relationships in "global" mode.
top_k: int = 60
# Number of tokens for the original chunks.
max_token_for_text_unit: int = 4000
# Number of tokens for the relationship descriptions
max_token_for_global_context: int = 4000
# Number of tokens for the entity descriptions
max_token_for_local_context: int = 4000
# Batch Insert: Insert multiple texts at once
rag.insert(["TEXT1", "TEXT2",...])
# Incremental Insert: Insert new documents into an existing LightRAG instance
rag = LightRAG(working_dir="./dickens")
with open("./newText.txt") as f:
rag.insert(f.read())
Graph visualization with html
- The following code can be found in
examples/graph_visual_with_html.py
import networkx as nx
from pyvis.network import Network
# Load the GraphML file
G = nx.read_graphml('./dickens/graph_chunk_entity_relation.graphml')
# Create a Pyvis network
net = Network(notebook=True)
# Convert NetworkX graph to Pyvis network
net.from_nx(G)
# Save and display the network
net.show('knowledge_graph.html')
Graph visualization with Neo4j
- The following code can be found in
examples/graph_visual_with_neo4j.py
import os
import json
from lightrag.utils import xml_to_json
from neo4j import GraphDatabase
# Constants
WORKING_DIR = "./dickens"
BATCH_SIZE_NODES = 500
BATCH_SIZE_EDGES = 100
# Neo4j connection credentials
NEO4J_URI = "bolt://localhost:7687"
NEO4J_USERNAME = "neo4j"
NEO4J_PASSWORD = "your_password"
def convert_xml_to_json(xml_path, output_path):
"""Converts XML file to JSON and saves the output."""
if not os.path.exists(xml_path):
print(f"Error: File not found - {xml_path}")
return None
json_data = xml_to_json(xml_path)
if json_data:
with open(output_path, 'w', encoding='utf-8') as f:
json.dump(json_data, f, ensure_ascii=False, indent=2)
print(f"JSON file created: {output_path}")
return json_data
else:
print("Failed to create JSON data")
return None
def process_in_batches(tx, query, data, batch_size):
"""Process data in batches and execute the given query."""
for i in range(0, len(data), batch_size):
batch = data[i:i + batch_size]
tx.run(query, {"nodes": batch} if "nodes" in query else {"edges": batch})
def main():
# Paths
xml_file = os.path.join(WORKING_DIR, 'graph_chunk_entity_relation.graphml')
json_file = os.path.join(WORKING_DIR, 'graph_data.json')
# Convert XML to JSON
json_data = convert_xml_to_json(xml_file, json_file)
if json_data is None:
return
# Load nodes and edges
nodes = json_data.get('nodes', [])
edges = json_data.get('edges', [])
# Neo4j queries
create_nodes_query = """
UNWIND $nodes AS node
MERGE (e:Entity {id: node.id})
SET e.entity_type = node.entity_type,
e.description = node.description,
e.source_id = node.source_id,
e.displayName = node.id
REMOVE e:Entity
WITH e, node
CALL apoc.create.addLabels(e, [node.entity_type]) YIELD node AS labeledNode
RETURN count(*)
"""
create_edges_query = """
UNWIND $edges AS edge
MATCH (source {id: edge.source})
MATCH (target {id: edge.target})
WITH source, target, edge,
CASE
WHEN edge.keywords CONTAINS 'lead' THEN 'lead'
WHEN edge.keywords CONTAINS 'participate' THEN 'participate'
WHEN edge.keywords CONTAINS 'uses' THEN 'uses'
WHEN edge.keywords CONTAINS 'located' THEN 'located'
WHEN edge.keywords CONTAINS 'occurs' THEN 'occurs'
ELSE REPLACE(SPLIT(edge.keywords, ',')[0], '\"', '')
END AS relType
CALL apoc.create.relationship(source, relType, {
weight: edge.weight,
description: edge.description,
keywords: edge.keywords,
source_id: edge.source_id
}, target) YIELD rel
RETURN count(*)
"""
set_displayname_and_labels_query = """
MATCH (n)
SET n.displayName = n.id
WITH n
CALL apoc.create.setLabels(n, [n.entity_type]) YIELD node
RETURN count(*)
"""
# Create a Neo4j driver
driver = GraphDatabase.driver(NEO4J_URI, auth=(NEO4J_USERNAME, NEO4J_PASSWORD))
try:
# Execute queries in batches
with driver.session() as session:
# Insert nodes in batches
session.execute_write(process_in_batches, create_nodes_query, nodes, BATCH_SIZE_NODES)
# Insert edges in batches
session.execute_write(process_in_batches, create_edges_query, edges, BATCH_SIZE_EDGES)
# Set displayName and labels
session.run(set_displayname_and_labels_query)
except Exception as e:
print(f"Error occurred: {e}")
finally:
driver.close()
if __name__ == "__main__":
main()
The dataset used in LightRAG can be downloaded from TommyChien/UltraDomain.
LightRAG uses the following prompt to generate high-level queries, with the corresponding code in example/generate_query.py
.
Prompt
Given the following description of a dataset:
{description}
Please identify 5 potential users who would engage with this dataset. For each user, list 5 tasks they would perform with this dataset. Then, for each (user, task) combination, generate 5 questions that require a high-level understanding of the entire dataset.
Output the results in the following structure:
- User 1: [user description]
- Task 1: [task description]
- Question 1:
- Question 2:
- Question 3:
- Question 4:
- Question 5:
- Task 2: [task description]
...
- Task 5: [task description]
- User 2: [user description]
...
- User 5: [user description]
...
To evaluate the performance of two RAG systems on high-level queries, LightRAG uses the following prompt, with the specific code available in example/batch_eval.py
.
Prompt
---Role---
You are an expert tasked with evaluating two answers to the same question based on three criteria: **Comprehensiveness**, **Diversity**, and **Empowerment**.
---Goal---
You will evaluate two answers to the same question based on three criteria: **Comprehensiveness**, **Diversity**, and **Empowerment**.
- **Comprehensiveness**: How much detail does the answer provide to cover all aspects and details of the question?
- **Diversity**: How varied and rich is the answer in providing different perspectives and insights on the question?
- **Empowerment**: How well does the answer help the reader understand and make informed judgments about the topic?
For each criterion, choose the better answer (either Answer 1 or Answer 2) and explain why. Then, select an overall winner based on these three categories.
Here is the question:
{query}
Here are the two answers:
**Answer 1:**
{answer1}
**Answer 2:**
{answer2}
Evaluate both answers using the three criteria listed above and provide detailed explanations for each criterion.
Output your evaluation in the following JSON format:
{{
"Comprehensiveness": {{
"Winner": "[Answer 1 or Answer 2]",
"Explanation": "[Provide explanation here]"
}},
"Empowerment": {{
"Winner": "[Answer 1 or Answer 2]",
"Explanation": "[Provide explanation here]"
}},
"Overall Winner": {{
"Winner": "[Answer 1 or Answer 2]",
"Explanation": "[Summarize why this answer is the overall winner based on the three criteria]"
}}
}}
Agriculture | CS | Legal | Mix | |||||
---|---|---|---|---|---|---|---|---|
NaiveRAG | LightRAG | NaiveRAG | LightRAG | NaiveRAG | LightRAG | NaiveRAG | LightRAG | |
Comprehensiveness | 32.69% | 67.31% | 35.44% | 64.56% | 19.05% | 80.95% | 36.36% | 63.64% |
Diversity | 24.09% | 75.91% | 35.24% | 64.76% | 10.98% | 89.02% | 30.76% | 69.24% |
Empowerment | 31.35% | 68.65% | 35.48% | 64.52% | 17.59% | 82.41% | 40.95% | 59.05% |
Overall | 33.30% | 66.70% | 34.76% | 65.24% | 17.46% | 82.54% | 37.59% | 62.40% |
RQ-RAG | LightRAG | RQ-RAG | LightRAG | RQ-RAG | LightRAG | RQ-RAG | LightRAG | |
Comprehensiveness | 32.05% | 67.95% | 39.30% | 60.70% | 18.57% | 81.43% | 38.89% | 61.11% |
Diversity | 29.44% | 70.56% | 38.71% | 61.29% | 15.14% | 84.86% | 28.50% | 71.50% |
Empowerment | 32.51% | 67.49% | 37.52% | 62.48% | 17.80% | 82.20% | 43.96% | 56.04% |
Overall | 33.29% | 66.71% | 39.03% | 60.97% | 17.80% | 82.20% | 39.61% | 60.39% |
HyDE | LightRAG | HyDE | LightRAG | HyDE | LightRAG | HyDE | LightRAG | |
Comprehensiveness | 24.39% | 75.61% | 36.49% | 63.51% | 27.68% | 72.32% | 42.17% | 57.83% |
Diversity | 24.96% | 75.34% | 37.41% | 62.59% | 18.79% | 81.21% | 30.88% | 69.12% |
Empowerment | 24.89% | 75.11% | 34.99% | 65.01% | 26.99% | 73.01% | 45.61% | 54.39% |
Overall | 23.17% | 76.83% | 35.67% | 64.33% | 27.68% | 72.32% | 42.72% | 57.28% |
GraphRAG | LightRAG | GraphRAG | LightRAG | GraphRAG | LightRAG | GraphRAG | LightRAG | |
Comprehensiveness | 45.56% | 54.44% | 45.98% | 54.02% | 47.13% | 52.87% | 51.86% | 48.14% |
Diversity | 19.65% | 80.35% | 39.64% | 60.36% | 25.55% | 74.45% | 35.87% | 64.13% |
Empowerment | 36.69% | 63.31% | 45.09% | 54.91% | 42.81% | 57.19% | 52.94% | 47.06% |
Overall | 43.62% | 56.38% | 45.98% | 54.02% | 45.70% | 54.30% | 51.86% | 48.14% |
All the code can be found in the ./reproduce
directory.
First, we need to extract unique contexts in the datasets.
Code
def extract_unique_contexts(input_directory, output_directory):
os.makedirs(output_directory, exist_ok=True)
jsonl_files = glob.glob(os.path.join(input_directory, '*.jsonl'))
print(f"Found {len(jsonl_files)} JSONL files.")
for file_path in jsonl_files:
filename = os.path.basename(file_path)
name, ext = os.path.splitext(filename)
output_filename = f"{name}_unique_contexts.json"
output_path = os.path.join(output_directory, output_filename)
unique_contexts_dict = {}
print(f"Processing file: {filename}")
try:
with open(file_path, 'r', encoding='utf-8') as infile:
for line_number, line in enumerate(infile, start=1):
line = line.strip()
if not line:
continue
try:
json_obj = json.loads(line)
context = json_obj.get('context')
if context and context not in unique_contexts_dict:
unique_contexts_dict[context] = None
except json.JSONDecodeError as e:
print(f"JSON decoding error in file {filename} at line {line_number}: {e}")
except FileNotFoundError:
print(f"File not found: {filename}")
continue
except Exception as e:
print(f"An error occurred while processing file {filename}: {e}")
continue
unique_contexts_list = list(unique_contexts_dict.keys())
print(f"There are {len(unique_contexts_list)} unique `context` entries in the file {filename}.")
try:
with open(output_path, 'w', encoding='utf-8') as outfile:
json.dump(unique_contexts_list, outfile, ensure_ascii=False, indent=4)
print(f"Unique `context` entries have been saved to: {output_filename}")
except Exception as e:
print(f"An error occurred while saving to the file {output_filename}: {e}")
print("All files have been processed.")
For the extracted contexts, we insert them into the LightRAG system.
Code
def insert_text(rag, file_path):
with open(file_path, mode='r') as f:
unique_contexts = json.load(f)
retries = 0
max_retries = 3
while retries < max_retries:
try:
rag.insert(unique_contexts)
break
except Exception as e:
retries += 1
print(f"Insertion failed, retrying ({retries}/{max_retries}), error: {e}")
time.sleep(10)
if retries == max_retries:
print("Insertion failed after exceeding the maximum number of retries")
We extract tokens from the first and the second half of each context in the dataset, then combine them as dataset descriptions to generate queries.
Code
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
def get_summary(context, tot_tokens=2000):
tokens = tokenizer.tokenize(context)
half_tokens = tot_tokens // 2
start_tokens = tokens[1000:1000 + half_tokens]
end_tokens = tokens[-(1000 + half_tokens):1000]
summary_tokens = start_tokens + end_tokens
summary = tokenizer.convert_tokens_to_string(summary_tokens)
return summary
For the queries generated in Step-2, we will extract them and query LightRAG.
Code
def extract_queries(file_path):
with open(file_path, 'r') as f:
data = f.read()
data = data.replace('**', '')
queries = re.findall(r'- Question \d+: (.+)', data)
return queries
.
├── examples
│ ├── batch_eval.py
│ ├── graph_visual_with_html.py
│ ├── graph_visual_with_neo4j.py
│ ├── generate_query.py
│ ├── lightrag_azure_openai_demo.py
│ ├── lightrag_bedrock_demo.py
│ ├── lightrag_hf_demo.py
│ ├── lightrag_ollama_demo.py
│ ├── lightrag_openai_compatible_demo.py
│ ├── lightrag_openai_demo.py
│ ├── lightrag_siliconcloud_demo.py
│ ├── lightrag_streamlit_demo.py
│ └── vram_management_demo.py
├── lightrag
│ ├── __init__.py
│ ├── base.py
│ ├── lightrag.py
│ ├── llm.py
│ ├── operate.py
│ ├── prompt.py
│ ├── storage.py
│ └── utils.py
├── reproduce
│ ├── Step_0.py
│ ├── Step_1.py
│ ├── Step_2.py
│ └── Step_3.py
├── .gitignore
├── .pre-commit-config.yaml
├── LICENSE
├── README.md
├── requirements.txt
└── setup.py
We have added a new Streamlit template for LightRAG. You can run it directly using (activate .env):
python3 -m streamlit run example/lightrag_streamlit_demo.py
@article{guo2024lightrag,
title={LightRAG: Simple and Fast Retrieval-Augmented Generation},
author={Zirui Guo and Lianghao Xia and Yanhua Yu and Tu Ao and Chao Huang},
year={2024},
eprint={2410.05779},
archivePrefix={arXiv},
primaryClass={cs.IR}
}