Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add satisficing FDSS 2023 portfolio. #175

Merged
merged 13 commits into from
Oct 6, 2023
79 changes: 79 additions & 0 deletions driver/portfolios/seq_opt_fdss_2023.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,79 @@
"""
This is the "Fast Downward Stone Soup 2023" sequential portfolio that
participated in the IPC 2023 optimal track.

Clemens Büchner, Remo Christen, Augusto Blaas Corrêa, Salomé Eriksson, Patrick Ferber, Jendrik Seipp and Silvan Sievers.
Fast Downward Stone Soup 2023.
In Tenth International Planning Competition (IPC 2023), Deterministic Part. 2023.
"""

SAS_FILE = "output.sas"
OPTIMAL = True

CONFIGS_STRIPS = [
# ipdb-60s-por
(542, ['--search', 'astar(ipdb(max_time=60), pruning=limited_pruning(pruning=atom_centric_stubborn_sets(), min_required_pruning_ratio=0.2))']),
# can-cegar-10s-por
(93, ['--search', 'astar(cpdbs(multiple_cegar(max_pdb_size=1000000,max_collection_size=10000000,pattern_generation_max_time=infinity,total_max_time=10,stagnation_limit=2,blacklist_trigger_percentage=0.75,enable_blacklist_on_stagnation=true,use_wildcard_plans=true)), pruning=limited_pruning(pruning=atom_centric_stubborn_sets(), min_required_pruning_ratio=0.2))']),
# mas-ssc-sbmiasm-300s-por
(213, ['--search', 'astar(merge_and_shrink(shrink_strategy=shrink_bisimulation(greedy=false), merge_strategy=merge_sccs(order_of_sccs=topological, merge_selector=score_based_filtering(scoring_functions=[sf_miasm(shrink_strategy=shrink_bisimulation(greedy=false),max_states=50000,threshold_before_merge=1),total_order(atomic_ts_order=reverse_level,product_ts_order=new_to_old,atomic_before_product=false)])), label_reduction=exact(before_shrinking=true, before_merging=false), max_states=50k, threshold_before_merge=1, main_loop_max_time=300), pruning=limited_pruning(pruning=atom_centric_stubborn_sets(), min_required_pruning_ratio=0.2))']),
# bjolp
(206, ['--search', 'let(lmc, landmark_cost_partitioning(lm_merged([lm_rhw(), lm_hm(m=1)])), astar(lmc,lazy_evaluator=lmc))']),
# seq-lmcut-por
(105, ['--search', 'astar(operatorcounting([state_equation_constraints(), lmcut_constraints()]), pruning=limited_pruning(pruning=atom_centric_stubborn_sets(), min_required_pruning_ratio=0.2))']),
# potential-initial-state
(83, ['--search', 'astar(initial_state_potential())']),
# cartesian-cegar-landmarks-goals-60s-por
(96, ['--search', 'astar(cegar(subtasks=[landmarks(order=random), goals(order=random)], max_states=infinity, max_transitions=infinity, max_time=60), pruning=limited_pruning(pruning=atom_centric_stubborn_sets(), min_required_pruning_ratio=0.2))']),
# can-sys3
(218, ['--search', 'astar(cpdbs(patterns=systematic(3)))']),
# seq-lmcut-hplus-relaxed
(91, ['--search', 'astar(operatorcounting([state_equation_constraints(), lmcut_constraints(), delete_relaxation_constraints(use_time_vars=false, use_integer_vars=false)]))']),
]

CONFIGS_COND_EFFS = [
# mas-ssc-dfp-60s
(1137, ['--search', 'astar(merge_and_shrink(shrink_strategy=shrink_bisimulation(greedy=false), merge_strategy=merge_sccs(order_of_sccs=topological, merge_selector=score_based_filtering(scoring_functions=[goal_relevance(), dfp(), total_order(atomic_ts_order=reverse_level,product_ts_order=new_to_old,atomic_before_product=false)])), label_reduction=exact(before_shrinking=true, before_merging=false), max_states=50k, threshold_before_merge=1, main_loop_max_time=60))']),
# mas-ssc-sbmiasm-300s
(346, ['--search', 'astar(merge_and_shrink(shrink_strategy=shrink_bisimulation(greedy=false), merge_strategy=merge_sccs(order_of_sccs=topological, merge_selector=score_based_filtering(scoring_functions=[sf_miasm(shrink_strategy=shrink_bisimulation(greedy=false),max_states=50000,threshold_before_merge=1),total_order(atomic_ts_order=reverse_level,product_ts_order=new_to_old,atomic_before_product=false)])), label_reduction=exact(before_shrinking=true, before_merging=false), max_states=50k, threshold_before_merge=1, main_loop_max_time=300))']),
# hmax
(229, ['--search', 'astar(hmax())']),
]

CONFIGS_AXIOMS = [
(1800, ['--search', 'astar(blind())']),
]


def get_pddl_features(task):
has_axioms = False
has_conditional_effects = False
with open(task) as f:
in_op = False
for line in f:
line = line.strip()
if line == "begin_rule":
has_axioms = True

if line == "begin_operator":
in_op = True
elif line == "end_operator":
in_op = False
elif in_op:
parts = line.split()
if len(parts) >= 6 and all(p.lstrip('-').isdigit() for p in parts):
jendrikseipp marked this conversation as resolved.
Show resolved Hide resolved
has_conditional_effects = True
return has_axioms, has_conditional_effects


HAS_AXIOMS, HAS_CONDITIONAL_EFFECTS = get_pddl_features(SAS_FILE)

print(f"Task has axioms: {HAS_AXIOMS}")
print(f"Task has conditional effects: {HAS_CONDITIONAL_EFFECTS}")

if HAS_AXIOMS:
CONFIGS = CONFIGS_AXIOMS
elif HAS_CONDITIONAL_EFFECTS:
CONFIGS = CONFIGS_COND_EFFS
else:
CONFIGS = CONFIGS_STRIPS
65 changes: 65 additions & 0 deletions driver/portfolios/seq_sat_fdss_2023.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,65 @@
"""
This is the "Fast Downward Stone Soup 2023" sequential portfolio that
participated in the IPC 2023 agile and satisficing tracks.

Clemens Büchner, Remo Christen, Augusto Blaas Corrêa, Salomé Eriksson, Patrick Ferber, Jendrik Seipp and Silvan Sievers.
Fast Downward Stone Soup 2023.
In Tenth International Planning Competition (IPC 2023), Deterministic Part. 2023.
"""

OPTIMAL = False

CONFIGS = [
# fdss-2018-01
(383, ['--search', 'let(hlm, landmark_sum(lm_reasonable_orders_hps(lm_rhw()),transform=adapt_costs(one)),let(hff, ff(transform=adapt_costs(one)),lazy(alt([single(hff),single(hff,pref_only=true),single(hlm),single(hlm,pref_only=true),type_based([hff,g()])],boost=1000),preferred=[hff,hlm],cost_type=one,reopen_closed=false,randomize_successors=true,preferred_successors_first=false,bound=BOUND, verbosity=silent)))']),
# fdss-2018-03
(57, ['--search', 'let(hlm, landmark_sum(lm_reasonable_orders_hps(lm_rhw()),transform=adapt_costs(one)),let(hff, ff(transform=adapt_costs(one)),lazy(alt([single(hff),single(hff,pref_only=true),single(hlm),single(hlm,pref_only=true)],boost=1000),preferred=[hff,hlm],cost_type=one,reopen_closed=false,randomize_successors=false,preferred_successors_first=true,bound=BOUND, verbosity=silent)))']),
# lazy_hff_hlm-epsilon-greedy_pref_ops-no-reasonable-orders
(60, ['--search', 'let(hlm, landmark_sum(lm_rhw(), pref=true, transform=adapt_costs(one)),let(hff, ff(transform=adapt_costs(one)),lazy(alt([single(hff),single(hff,pref_only=true),epsilon_greedy(hlm),single(hlm,pref_only=true)],boost=1000),preferred=[hff,hlm],cost_type=one,reopen_closed=false,randomize_successors=true, bound=BOUND, verbosity=silent)))']),
# fdss-2014-01
(22, ['--search', 'let(hadd, add(transform=adapt_costs(one)),let(hlm, landmark_sum(lm_reasonable_orders_hps(lm_rhw()),transform=adapt_costs(plusone)),lazy_greedy([hadd,hlm],preferred=[hadd,hlm],cost_type=one,bound=BOUND, verbosity=silent)))']),
# fdss-2018-04
(30, ['--search', 'let(hff, ff(transform=adapt_costs(one)),let(hlm, landmark_sum(lm_reasonable_orders_hps(lm_rhw()),transform=adapt_costs(one)),eager_greedy([hff,hlm],preferred=[hff,hlm],cost_type=one,bound=BOUND, verbosity=silent)))']),
# fdss-2014-08
(206, ['--search', 'let(hff, ff(transform=adapt_costs(one)),let(hadd, add(transform=adapt_costs(one)),lazy_greedy([hadd,hff],preferred=[hadd,hff],cost_type=one,bound=BOUND, verbosity=silent)))']),
# fdss-2014-03
(30, ['--search', 'let(hadd, add(transform=adapt_costs(one)),let(hlm, landmark_sum(lm_reasonable_orders_hps(lm_rhw()),transform=adapt_costs(plusone)),eager_greedy([hadd,hlm],preferred=[hadd,hlm],cost_type=one,bound=BOUND, verbosity=silent)))']),
# fdss-2018-07
(21, ['--search', 'let(hcea, cea(transform=adapt_costs(one)),let(hlm, landmark_sum(lm_reasonable_orders_hps(lm_rhw()),transform=adapt_costs(one)),lazy_greedy([hcea,hlm],preferred=[hcea,hlm],cost_type=one,bound=BOUND, verbosity=silent)))']),
# fdss-2018-09
(59, ['--search', 'let(hff, ff(transform=adapt_costs(one)),lazy(alt([single(sum([g(),weight(hff,10)])),single(sum([g(),weight(hff,10)]),pref_only=true)],boost=2000),preferred=[hff],reopen_closed=false,cost_type=one,bound=BOUND, verbosity=silent))']),
# fdss-2014-11
(89, ['--search', 'let(hff, ff(transform=adapt_costs(one)),let(hlm, landmark_sum(lm_reasonable_orders_hps(lm_rhw()),transform=adapt_costs(plusone)),lazy_wastar([hff,hlm],w=3,preferred=[hff,hlm],cost_type=one,bound=BOUND, verbosity=silent)))']),
# fdss-2018-14
(29, ['--search', 'let(hgoalcount, goalcount(transform=adapt_costs(plusone)),let(hff, ff(),lazy(alt([single(sum([g(),weight(hff,10)])),single(sum([g(),weight(hff,10)]),pref_only=true),single(sum([g(),weight(hgoalcount,10)])),single(sum([g(),weight(hgoalcount,10)]),pref_only=true)],boost=2000),preferred=[hff,hgoalcount],reopen_closed=false,cost_type=one,bound=BOUND, verbosity=silent)))']),
# fdss-1-03
(53, ['--search', 'let(hcea, cea(transform=adapt_costs(one)),let(hcg, cg(transform=adapt_costs(one)),lazy_greedy([hcea,hcg],preferred=[hcea,hcg],cost_type=one,bound=BOUND, verbosity=silent)))']),
# fdss-2014-16
(19, ['--search', 'let(hcg, cg(transform=adapt_costs(one)),let(hff, ff(transform=adapt_costs(one)),lazy_wastar([hcg,hff],w=3,preferred=[hcg,hff],cost_type=one,bound=BOUND, verbosity=silent)))']),
# fdss-2018-18
(177, ['--search', 'let(hcg, cg(transform=adapt_costs(plusone)),lazy(alt([type_based([g()]),single(hcg),single(hcg,pref_only=true)],boost=0),preferred=[hcg],reopen_closed=true,cost_type=plusone,bound=BOUND, verbosity=silent))']),
# fdss-2014-13
(30, ['--search', 'let(hcg, cg(transform=adapt_costs(one)),let(hlm, landmark_sum(lm_reasonable_orders_hps(lm_rhw()),transform=adapt_costs(plusone)),eager_greedy([hcg,hlm],preferred=[hcg,hlm],cost_type=one,bound=BOUND, verbosity=silent)))']),
# fdss-2014-18
(30, ['--search', 'let(hadd, add(transform=adapt_costs(one)),eager(alt([single(sum([g(), weight(hadd, 3)])),single(sum([g(), weight(hadd,3)]),pref_only=true)]),preferred=[hadd],cost_type=one,bound=BOUND, verbosity=silent))']),
# fdss-1-11
(26, ['--search', 'let(h, cea(transform=adapt_costs(one)),eager_greedy([h],preferred=[h],cost_type=one,bound=BOUND, verbosity=silent))']),
# fdss-2014-19
(27, ['--search', 'let(hff, ff(transform=adapt_costs(one)),let(hcea, cea(transform=adapt_costs(one)),eager(alt([single(sum([g(),weight(hff,3)])),single(sum([g(),weight(hff,3)]),pref_only=true),single(sum([g(),weight(hcea,3)])),single(sum([g(),weight(hcea,3)]),pref_only=true)]),preferred=[hff,hcea],cost_type=one,bound=BOUND, verbosity=silent)))']),
# fdss-2018-02
(18, ['--search', 'let(lmg, lm_rhw(only_causal_landmarks=false,disjunctive_landmarks=true,use_orders=false),let(hlm, landmark_cost_partitioning(lmg,transform=adapt_costs(one)),let(hff, ff(transform=adapt_costs(one)),lazy(alt([type_based([g()]),single(hlm),single(hlm,pref_only=true),single(hff),single(hff,pref_only=true)],boost=0),preferred=[hlm],reopen_closed=false,cost_type=plusone,bound=BOUND, verbosity=silent))))']),
# fdss-2018-16
(29, ['--search', 'let(lmg, lm_rhw(only_causal_landmarks=false,disjunctive_landmarks=false,use_orders=true),let(hlm, landmark_sum(lmg,transform=adapt_costs(one)),let(hff, ff(transform=adapt_costs(one)),let(hblind, blind(),lazy(alt([type_based([g()]),single(sum([g(),weight(hblind,2)])),single(sum([g(),weight(hblind,2)]),pref_only=true),single(sum([g(),weight(hlm,2)])),single(sum([g(),weight(hlm,2)]),pref_only=true),single(sum([g(),weight(hff,2)])),single(sum([g(),weight(hff,2)]),pref_only=true)],boost=4419),preferred=[hlm],reopen_closed=true,cost_type=one,bound=BOUND, verbosity=silent)))))']),
# fdss-2018-29
(90, ['--search', 'let(hadd, add(transform=adapt_costs(plusone)),let(hff, ff(),lazy(alt([tiebreaking([sum([weight(g(),4),weight(hff,5)]),hff]),tiebreaking([sum([weight(g(),4),weight(hff,5)]),hff],pref_only=true),tiebreaking([sum([weight(g(),4),weight(hadd,5)]),hadd]),tiebreaking([sum([weight(g(),4),weight(hadd,5)]),hadd],pref_only=true)],boost=2537),preferred=[hff,hadd],reopen_closed=true,bound=BOUND, verbosity=silent)))']),
# fdss-2018-31
(28, ['--search', 'let(hff, ff(transform=adapt_costs(one)),lazy(alt([single(sum([weight(g(),2),weight(hff,3)])),single(sum([weight(g(),2),weight(hff,3)]),pref_only=true)],boost=5000),preferred=[hff],reopen_closed=true,cost_type=one,bound=BOUND, verbosity=silent))']),
# fdss-2018-28
(29, ['--search', 'let(hblind, blind(),let(hadd, add(),let(hcg, cg(transform=adapt_costs(one)),let(hhmax, hmax(),eager(alt([tiebreaking([sum([g(),weight(hblind,7)]),hblind]),tiebreaking([sum([g(),weight(hhmax,7)]),hhmax]),tiebreaking([sum([g(),weight(hadd,7)]),hadd]),tiebreaking([sum([g(),weight(hcg,7)]),hcg])],boost=2142),preferred=[],reopen_closed=true,bound=BOUND, verbosity=silent)))))']),
# fdss-2018-35
(85, ['--search', 'let(lmg, lm_hm(conjunctive_landmarks=false,use_orders=false,m=1),let(hcg, cg(transform=adapt_costs(one)),let(hlm, landmark_cost_partitioning(lmg),lazy(alt([single(hlm),single(hlm,pref_only=true),single(hcg),single(hcg,pref_only=true)],boost=0),preferred=[hcg],reopen_closed=false,cost_type=one,bound=BOUND, verbosity=silent))))']),
# fdss-2018-27
(30, ['--search', 'let(lmg, lm_reasonable_orders_hps(lm_rhw(only_causal_landmarks=true,disjunctive_landmarks=true,use_orders=true)),let(hblind, blind(),let(hadd, add(),let(hlm, landmark_sum(lmg,pref=true,transform=adapt_costs(plusone)),let(hff, ff(),lazy(alt([single(sum([weight(g(),2),weight(hblind,3)])),single(sum([weight(g(),2),weight(hblind,3)]),pref_only=true),single(sum([weight(g(),2),weight(hff,3)])),single(sum([weight(g(),2),weight(hff,3)]),pref_only=true),single(sum([weight(g(),2),weight(hlm,3)])),single(sum([weight(g(),2),weight(hlm,3)]),pref_only=true),single(sum([weight(g(),2),weight(hadd,3)])),single(sum([weight(g(),2),weight(hadd,3)]),pref_only=true)],boost=2474),preferred=[hadd],reopen_closed=false,cost_type=one,bound=BOUND, verbosity=silent))))))']),
# fdss-2018-39
(59, ['--search', 'let(lmg, lm_exhaust(only_causal_landmarks=false),let(hgoalcount, goalcount(transform=adapt_costs(plusone)),let(hlm, landmark_sum(lmg),let(hff, ff(),let(hblind, blind(),eager(alt([tiebreaking([sum([weight(g(),8),weight(hblind,9)]),hblind]),tiebreaking([sum([weight(g(),8),weight(hlm,9)]),hlm]),tiebreaking([sum([weight(g(),8),weight(hff,9)]),hff]),tiebreaking([sum([weight(g(),8),weight(hgoalcount,9)]),hgoalcount])],boost=2005),preferred=[],reopen_closed=true,bound=BOUND, verbosity=silent))))))']),
]