Skip to content

Commit

Permalink
Merge pull request kyegomez#175 from kyegomez/memory
Browse files Browse the repository at this point in the history
Added Qdrant memory class
  • Loading branch information
kyegomez authored Nov 27, 2023
2 parents 01bb008 + 6922950 commit 9eb0bb3
Show file tree
Hide file tree
Showing 5 changed files with 247 additions and 3 deletions.
81 changes: 81 additions & 0 deletions docs/swarms/memory/qdrant.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,81 @@
# Qdrant Client Library

## Overview

The Qdrant Client Library is designed for interacting with the Qdrant vector database, allowing efficient storage and retrieval of high-dimensional vector data. It integrates with machine learning models for embedding and is particularly suited for search and recommendation systems.

## Installation

```python
pip install qdrant-client sentence-transformers httpx
```

## Class Definition: Qdrant

```python
class Qdrant:
def __init__(self, api_key: str, host: str, port: int = 6333, collection_name: str = "qdrant", model_name: str = "BAAI/bge-small-en-v1.5", https: bool = True):
...
```

### Constructor Parameters

| Parameter | Type | Description | Default Value |
|-----------------|---------|--------------------------------------------------|-----------------------|
| api_key | str | API key for authentication. | - |
| host | str | Host address of the Qdrant server. | - |
| port | int | Port number for the Qdrant server. | 6333 |
| collection_name | str | Name of the collection to be used or created. | "qdrant" |
| model_name | str | Name of the sentence transformer model. | "BAAI/bge-small-en-v1.5" |
| https | bool | Flag to use HTTPS for connection. | True |

### Methods

#### `_load_embedding_model(model_name: str)`

Loads the sentence embedding model.

#### `_setup_collection()`

Checks if the specified collection exists in Qdrant; if not, creates it.

#### `add_vectors(docs: List[dict]) -> OperationResponse`

Adds vectors to the Qdrant collection.

#### `search_vectors(query: str, limit: int = 3) -> SearchResult`

Searches the Qdrant collection for vectors similar to the query vector.

## Usage Examples

### Example 1: Setting Up the Qdrant Client

```python
from qdrant_client import Qdrant

qdrant_client = Qdrant(api_key="your_api_key", host="localhost", port=6333)
```

### Example 2: Adding Vectors to a Collection

```python
documents = [
{"page_content": "Sample text 1"},
{"page_content": "Sample text 2"}
]

operation_info = qdrant_client.add_vectors(documents)
print(operation_info)
```

### Example 3: Searching for Vectors

```python
search_result = qdrant_client.search_vectors("Sample search query")
print(search_result)
```

## Further Information

Refer to the [Qdrant Documentation](https://qdrant.tech/docs) for more details on the Qdrant vector database.
1 change: 1 addition & 0 deletions mkdocs.yml
Original file line number Diff line number Diff line change
Expand Up @@ -101,6 +101,7 @@ nav:
- swarms.memory:
- PineconeVectorStoreStore: "swarms/memory/pinecone.md"
- PGVectorStore: "swarms/memory/pg.md"
- Qdrant: "swarms/memory/qdrant.md"
- Guides:
- Overview: "examples/index.md"
- Agents:
Expand Down
18 changes: 18 additions & 0 deletions playground/memory/qdrant/usage.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,18 @@
from langchain.document_loaders import CSVLoader
from swarms.memory import qdrant

loader = CSVLoader(file_path="../document_parsing/aipg/aipg.csv", encoding='utf-8-sig')
docs = loader.load()


# Initialize the Qdrant instance
# See qdrant documentation on how to run locally
qdrant_client = qdrant.Qdrant(host ="https://697ea26c-2881-4e17-8af4-817fcb5862e8.europe-west3-0.gcp.cloud.qdrant.io", collection_name="qdrant", api_key="BhG2_yINqNU-aKovSEBadn69Zszhbo5uaqdJ6G_qDkdySjAljvuPqQ")
qdrant_client.add_vectors(docs)

# Perform a search
search_query = "Who is jojo"
search_results = qdrant_client.search_vectors(search_query)
print("Search Results:")
for result in search_results:
print(result)
110 changes: 107 additions & 3 deletions swarms/memory/qdrant.py
Original file line number Diff line number Diff line change
@@ -1,6 +1,110 @@
"""
QDRANT MEMORY CLASS
from typing import List
from sentence_transformers import SentenceTransformer
from httpx import RequestError
from qdrant_client import QdrantClient
from qdrant_client.http.models import Distance, VectorParams, PointStruct

class Qdrant:
def __init__(self, api_key: str, host: str, port: int = 6333, collection_name: str = "qdrant", model_name: str = "BAAI/bge-small-en-v1.5", https: bool = True):
"""
Qdrant class for managing collections and performing vector operations using QdrantClient.
Attributes:
client (QdrantClient): The Qdrant client for interacting with the Qdrant server.
collection_name (str): Name of the collection to be managed in Qdrant.
model (SentenceTransformer): The model used for generating sentence embeddings.
"""
Args:
api_key (str): API key for authenticating with Qdrant.
host (str): Host address of the Qdrant server.
port (int): Port number of the Qdrant server. Defaults to 6333.
collection_name (str): Name of the collection to be used or created. Defaults to "qdrant".
model_name (str): Name of the model to be used for embeddings. Defaults to "BAAI/bge-small-en-v1.5".
https (bool): Flag to indicate if HTTPS should be used. Defaults to True.
"""
try:
self.client = QdrantClient(url=host, port=port, api_key=api_key)
self.collection_name = collection_name
self._load_embedding_model(model_name)
self._setup_collection()
except RequestError as e:
print(f"Error setting up QdrantClient: {e}")

def _load_embedding_model(self, model_name: str):
"""
Loads the sentence embedding model specified by the model name.
Args:
model_name (str): The name of the model to load for generating embeddings.
"""
try:
self.model = SentenceTransformer(model_name)
except Exception as e:
print(f"Error loading embedding model: {e}")

def _setup_collection(self):
try:
exists = self.client.get_collection(self.collection_name)
if exists:
print(f"Collection '{self.collection_name}' already exists.")
except Exception as e:
self.client.create_collection(
collection_name=self.collection_name,
vectors_config=VectorParams(size=self.model.get_sentence_embedding_dimension(), distance=Distance.DOT),
)
print(f"Collection '{self.collection_name}' created.")

def add_vectors(self, docs: List[dict]):
"""
Adds vector representations of documents to the Qdrant collection.
Args:
docs (List[dict]): A list of documents where each document is a dictionary with at least a 'page_content' key.
Returns:
OperationResponse or None: Returns the operation information if successful, otherwise None.
"""
points = []
for i, doc in enumerate(docs):
try:
if 'page_content' in doc:
embedding = self.model.encode(doc['page_content'], normalize_embeddings=True)
points.append(PointStruct(id=i + 1, vector=embedding, payload={"content": doc['page_content']}))
else:
print(f"Document at index {i} is missing 'page_content' key")
except Exception as e:
print(f"Error processing document at index {i}: {e}")

try:
operation_info = self.client.upsert(
collection_name=self.collection_name,
wait=True,
points=points,
)
return operation_info
except Exception as e:
print(f"Error adding vectors: {e}")
return None

def search_vectors(self, query: str, limit: int = 3):
"""
Searches the collection for vectors similar to the query vector.
Args:
query (str): The query string to be converted into a vector and used for searching.
limit (int): The number of search results to return. Defaults to 3.
Returns:
SearchResult or None: Returns the search results if successful, otherwise None.
"""
try:
query_vector = self.model.encode(query, normalize_embeddings=True)
search_result = self.client.search(
collection_name=self.collection_name,
query_vector=query_vector,
limit=limit
)
return search_result
except Exception as e:
print(f"Error searching vectors: {e}")
return None
40 changes: 40 additions & 0 deletions tests/memory/qdrant.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,40 @@
import pytest
from unittest.mock import Mock, patch

from swarms.memory.qdrant import Qdrant


@pytest.fixture
def mock_qdrant_client():
with patch('your_module.QdrantClient') as MockQdrantClient:
yield MockQdrantClient()

@pytest.fixture
def mock_sentence_transformer():
with patch('sentence_transformers.SentenceTransformer') as MockSentenceTransformer:
yield MockSentenceTransformer()

@pytest.fixture
def qdrant_client(mock_qdrant_client, mock_sentence_transformer):
client = Qdrant(api_key="your_api_key", host="your_host")
yield client

def test_qdrant_init(qdrant_client, mock_qdrant_client):
assert qdrant_client.client is not None

def test_load_embedding_model(qdrant_client, mock_sentence_transformer):
qdrant_client._load_embedding_model("model_name")
mock_sentence_transformer.assert_called_once_with("model_name")

def test_setup_collection(qdrant_client, mock_qdrant_client):
qdrant_client._setup_collection()
mock_qdrant_client.get_collection.assert_called_once_with(qdrant_client.collection_name)

def test_add_vectors(qdrant_client, mock_qdrant_client):
mock_doc = Mock(page_content="Sample text")
qdrant_client.add_vectors([mock_doc])
mock_qdrant_client.upsert.assert_called_once()

def test_search_vectors(qdrant_client, mock_qdrant_client):
qdrant_client.search_vectors("test query")
mock_qdrant_client.search.assert_called_once()

0 comments on commit 9eb0bb3

Please sign in to comment.