-
Notifications
You must be signed in to change notification settings - Fork 2
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Include MoG and ConditionalNorms. #1
base: main
Are you sure you want to change the base?
Changes from all commits
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -8,6 +8,43 @@ | |
from torch import nn | ||
|
||
|
||
class ConditionalBatchNorm2d(nn.Module): | ||
def __init__(self, num_features, num_classes, momentum, eps): | ||
super().__init__() | ||
self.num_features = num_features | ||
self.bn = nn.BatchNorm1d(self.num_features, momentum=momentum, eps=eps, affine=False) | ||
self.embed_scale = nn.Embedding(num_classes, self.num_features) | ||
self.embed_bias = nn.Embedding(num_classes, self.num_features) | ||
self.embed_scale.weight.data.normal_(1, 0.02) # Initialise scale at N(1, 0.02) | ||
self.embed_bias.weight.data.zero_() # Initialise bias at 0 | ||
|
||
def forward(self, x, y): | ||
out = self.bn(x) | ||
gamma = self.embed_scale(y.long().ravel()) | ||
beta = self.embed_bias(y.long().ravel()) | ||
out = gamma.view(-1, self.num_features) * out + beta.view(-1, self.num_features) | ||
|
||
return out | ||
|
||
class ConditionalLayerNorm(nn.Module): | ||
def __init__(self, num_features, num_classes): | ||
super().__init__() | ||
self.num_features = num_features | ||
self.ln = nn.LayerNorm(self.num_features, elementwise_affine=False) | ||
self.embed = nn.Embedding(num_classes, self.num_features * 2) | ||
self.embed_scale = nn.Embedding(num_classes, self.num_features) | ||
self.embed_bias = nn.Embedding(num_classes, self.num_features) | ||
self.embed_scale.weight.data.normal_(1, 0.02) # Initialise scale at N(1, 0.02) | ||
self.embed.weight.data[:, self.num_features:].zero_() # Initialise bias at 0 | ||
|
||
def forward(self, x, y): | ||
out = self.ln(x) | ||
gamma = self.embed_scale(y.long().ravel()) | ||
beta = self.embed_bias(y.long().ravel()) | ||
out = gamma.view(-1, self.num_features) * out + beta.view(-1, self.num_features) | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Same here. |
||
|
||
return out | ||
|
||
class MLPBlock(nn.Module): | ||
"""Multi-layer perceptron block. | ||
|
||
|
@@ -46,6 +83,8 @@ def __init__( | |
n_in: int, | ||
n_out: int, | ||
bias: bool = True, | ||
cat_dim: int | None = None, | ||
conditional: bool = False, | ||
Comment on lines
+86
to
+87
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Needs documentation There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. It currently fails. Can you add something like batch_key (it's the site in mrVI) and ConditionalNorm is only computed on this. It would be 'assay_suspension' for census. |
||
norm: Literal["batch", "layer"] | None = None, | ||
norm_kwargs: dict | None = None, | ||
activation: Literal["relu", "leaky_relu", "softmax", "softplus"] | None = None, | ||
|
@@ -62,16 +101,28 @@ def __init__( | |
self.dropout = nn.Identity() | ||
self.residual = residual | ||
|
||
if norm == "batch": | ||
self.norm = nn.BatchNorm1d(n_out, **self.norm_kwargs) | ||
elif norm == "layer": | ||
self.norm = nn.LayerNorm(n_out, **self.norm_kwargs) | ||
elif norm is not None: | ||
raise InvalidParameterError( | ||
param="norm", | ||
value=norm, | ||
valid=["batch", "layer", None], | ||
) | ||
if conditional: | ||
if norm == "batch": | ||
self.norm = ConditionalBatchNorm2d(n_out, cat_dim, momentum=0.01, eps=0.001) | ||
elif norm == "layer": | ||
self.norm = ConditionalLayerNorm(n_out, cat_dim) | ||
elif norm is not None: | ||
raise InvalidParameterError( | ||
param="norm", | ||
value=norm, | ||
valid=["batch", "layer", None], | ||
) | ||
else: | ||
if norm == "batch": | ||
self.norm = nn.BatchNorm1d(n_out, **self.norm_kwargs) | ||
elif norm == "layer": | ||
self.norm = nn.LayerNorm(n_out, **self.norm_kwargs) | ||
elif norm is not None: | ||
raise InvalidParameterError( | ||
param="norm", | ||
value=norm, | ||
valid=["batch", "layer", None], | ||
) | ||
|
||
if activation == "relu": | ||
self.activation = nn.ReLU(**self.activation_kwargs) | ||
|
@@ -209,6 +260,7 @@ def __init__( | |
n_hidden: int, | ||
n_layers: int, | ||
bias: bool = True, | ||
cat_dim: int | None = None, | ||
norm: str | None = None, | ||
norm_kwargs: dict | None = None, | ||
activation: str | None = None, | ||
|
@@ -231,6 +283,7 @@ def __init__( | |
n_in=n_in, | ||
n_out=n_out, | ||
bias=bias, | ||
cat_dim=cat_dim, | ||
norm=norm, | ||
norm_kwargs=norm_kwargs, | ||
activation=activation, | ||
|
@@ -303,6 +356,7 @@ def __init__( | |
n_hidden: int, | ||
n_layers: int, | ||
bias: bool = True, | ||
cat_dim: int | None = None, | ||
norm: str | None = None, | ||
norm_kwargs: dict | None = None, | ||
activation: str | None = None, | ||
|
@@ -320,6 +374,7 @@ def __init__( | |
n_hidden=n_hidden, | ||
n_layers=n_layers, | ||
bias=bias, | ||
cat_dim=cat_dim, | ||
norm=norm, | ||
norm_kwargs=norm_kwargs, | ||
activation=activation, | ||
|
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -39,10 +39,13 @@ def __init__( | |
self, | ||
n_vars: int, | ||
n_latent: int = 25, | ||
n_labels: int | None = None, | ||
categorical_covariates: list[int] | None = None, | ||
likelihood: str = "zinb", | ||
encoder_kwargs: dict | None = None, | ||
decoder_kwargs: dict | None = None, | ||
prior: str | None = None, | ||
mixture_components: int = 50, | ||
): | ||
super().__init__() | ||
|
||
|
@@ -53,6 +56,29 @@ def __init__( | |
self.encoder_kwargs = encoder_kwargs or {} | ||
self.decoder_kwargs = decoder_kwargs or {} | ||
|
||
self.prior = prior | ||
if self.prior=='mog': | ||
self.register_buffer( | ||
"u_prior_logits", torch.ones([mixture_components])) | ||
self.register_buffer( | ||
"u_prior_means", torch.randn([n_latent, mixture_components])) | ||
self.register_buffer( | ||
"u_prior_scales", torch.zeros([n_latent, mixture_components])) | ||
elif self.prior=='mog_celltype': | ||
self.register_buffer( | ||
"u_prior_logits", torch.ones([n_labels])) | ||
self.register_buffer( | ||
"u_prior_means", torch.randn([n_latent, n_labels])) | ||
self.register_buffer( | ||
"u_prior_scales", torch.zeros([n_latent, n_labels])) | ||
Comment on lines
+60
to
+73
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Are these parameters updated during model training? There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Yes they are learnable and are updated in my hands. |
||
|
||
self.covariates_encoder = nn.Identity() | ||
if self.categorical_covariates is not None: | ||
self.covariates_encoder = ExtendableEmbeddingList( | ||
num_embeddings=self.categorical_covariates, | ||
embedding_dim=self.n_latent, | ||
) | ||
|
||
encoder_dist_params = likelihood_to_dist_params("normal") | ||
_encoder_kwargs = { | ||
"n_hidden": 256, | ||
|
@@ -62,6 +88,7 @@ def __init__( | |
"activation": "gelu", | ||
"dropout_rate": 0.1, | ||
"residual": True, | ||
"cat_dim": self.covariates_encoder.num_embeddings, | ||
} | ||
_encoder_kwargs.update(self.encoder_kwargs) | ||
self.encoder = MultiOutputMLP( | ||
|
@@ -81,7 +108,9 @@ def __init__( | |
"activation": "gelu", | ||
"dropout_rate": None, | ||
"residual": True, | ||
"cat_dim": self.covariates_encoder.num_embeddings | ||
} | ||
|
||
_decoder_kwargs.update(self.decoder_kwargs) | ||
self.decoder = MultiOutputMLP( | ||
n_in=self.n_latent, | ||
|
@@ -91,13 +120,6 @@ def __init__( | |
**_decoder_kwargs, | ||
) | ||
|
||
self.covariates_encoder = nn.Identity() | ||
if self.categorical_covariates is not None: | ||
self.covariates_encoder = ExtendableEmbeddingList( | ||
num_embeddings=self.categorical_covariates, | ||
embedding_dim=self.n_latent, | ||
) | ||
|
||
def get_covariate_embeddings( | ||
self, | ||
covariate_indexes: list[int] | int | None, | ||
|
@@ -113,25 +135,44 @@ def get_covariate_embeddings( | |
|
||
def _get_inference_input(self, tensors: dict[str, torch.Tensor]) -> dict: | ||
x = tensors[REGISTRY_KEYS.X_KEY] | ||
y = tensors[REGISTRY_KEYS.LABELS_KEY] | ||
covariates = tensors.get(REGISTRY_KEYS.CAT_COVS_KEY, None) | ||
return { | ||
REGISTRY_KEYS.X_KEY: x, | ||
"y": y, | ||
REGISTRY_KEYS.CAT_COVS_KEY: covariates, | ||
} | ||
|
||
@auto_move_data | ||
def inference( | ||
self, | ||
X: torch.Tensor, | ||
y: torch.Tensor | None = None, | ||
extra_categorical_covs: torch.Tensor | None = None, | ||
subset_categorical_covs: int | list[int] | None = None, | ||
): | ||
X = torch.log1p(X) | ||
library_size = torch.log(X.sum(dim=1, keepdim=True)) | ||
X = torch.log1p(X) | ||
|
||
posterior_loc, posterior_scale = self.encoder(X) | ||
posterior = dist.Normal(posterior_loc, posterior_scale + 1e-9) | ||
prior = dist.Normal(torch.zeros_like(posterior_loc), torch.ones_like(posterior_scale)) | ||
|
||
if self.prior=='mog': | ||
cats = dist.Categorical(logits=self.u_prior_logits) | ||
normal_dists = dist.Normal( | ||
self.u_prior_means, | ||
torch.exp(self.u_prior_scales)) | ||
prior = dist.MixtureSameFamily(cats, normal_dists) | ||
elif self.prior=='mog_celltype': | ||
label_bias = 10.0 * torch.nn.functional.one_hot(labels, self.n_labels) if self.n_labels >= 2 else 0.0 | ||
cats = dist.Categorical(logits=self.u_prior_logits + label_bias) | ||
normal_dists = dist.Normal( | ||
self.u_prior_means, | ||
torch.exp(self.u_prior_scales)) | ||
prior = dist.MixtureSameFamily(cats, normal_dists) | ||
else: | ||
prior = dist.Normal(torch.zeros_like(posterior_loc), torch.ones_like(posterior_scale)) | ||
|
||
z = posterior.rsample() | ||
|
||
covariates_z = self.covariates_encoder( | ||
|
@@ -216,10 +257,18 @@ def loss( | |
X = tensors[REGISTRY_KEYS.X_KEY] | ||
posterior = inference_outputs[TENSORS_KEYS.QZ_KEY] | ||
prior = inference_outputs[TENSORS_KEYS.PZ_KEY] | ||
likelihood = generative_outputs[TENSORS_KEYS.PX_KEY] | ||
|
||
# (n_obs, n_latent) -> (n_obs,) | ||
kl_div = dist.kl_divergence(posterior, prior).sum(dim=-1) | ||
if self.prior=='mog' or self.prior=='mog_celltype': | ||
u = posterior.rsample(sample_shape=(10,)) | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Should we add the sample shape as a parameter? There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Potentially, in mrVI we fixed it. We should then expose it through model.train. |
||
# (n_obs, n_latent) -> (n_obs,) | ||
kl_z = prior.log_prob(u) - posterior.log_prob(u) | ||
kl_div = kl_z.sum(-1) | ||
else: | ||
# (n_obs, n_latent) -> (n_obs,) | ||
kl_div = dist.kl_divergence(posterior, prior).sum(dim=-1) | ||
|
||
|
||
likelihood = generative_outputs[TENSORS_KEYS.PX_KEY] | ||
weighted_kl_div = kl_weight * kl_div | ||
# (n_obs, n_vars) -> (n_obs,) | ||
reconstruction_loss = -likelihood.log_prob(X).sum(dim=-1) | ||
|
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Not sure the .view() thing is needed anymore?