Know2BIO is a comprehensive biomedical knowledge graph harmonizing heterogeneous database sources.
We recommend using Anaconda3 to manage the environment.
- Install Anaconda3.
- Edit
env.yaml
: set $USER_PATH to user's directory. - Create
know2bio
environment usingconda env create -f env.yml
.
- Server: AMD EPYC 7542 Processor (128 cores), 1.73 TB RAM, and 8 NVIDIA A100-SXM4-80GB GPUs.
- Operating system: Ubuntu 20.04 LTS.
- Python environment: follow the guide in
Environment Setup
Section.
- To run the experiments, please execute
main.py
script. Arguments are listed below.
usage: main.py [-h] [--dataset {ontology,instance,whole,FB15K,WN,WN18RR,FB237,YAGO3-10}]
[--model {TransE,TransR,DistMult,CP,MurE,RotE,RefE,AttE,RotH,RefH,AttH,ComplEx,RotatE}] [--regularizer {N3,F2}] [--reg REG]
[--optimizer {Adagrad,Adam,SparseAdam}] [--max_epochs MAX_EPOCHS] [--patience PATIENCE] [--valid VALID] [--rank RANK] [--batch_size BATCH_SIZE] [--neg_sample_size NEG_SAMPLE_SIZE]
[--init_size INIT_SIZE] [--learning_rate LEARNING_RATE]
Knowledge Graph Embedding
options:
-h, --help show this help message and exit
--dataset {ontology,instance,whole}
Knowledge Graph dataset: ontology, instance, whole views
--model {TransE,TransR,DistMult,CP,MurE,RotE,RefE,AttE,RotH,RefH,AttH,ComplEx,RotatE}
Knowledge Graph embedding model
--optimizer {Adagrad,Adam,SparseAdam}
Optimizer
--max_epochs MAX_EPOCHS
Maximum number of epochs to train for
--patience PATIENCE Number of epochs before early stopping
--valid VALID Number of epochs before validation
--rank RANK Embedding dimension
--batch_size BATCH_SIZE
Batch size
--neg_sample_size NEG_SAMPLE_SIZE
Negative sample size, -1 to not use negative sampling
--dropout DROPOUT Dropout rate
--init_size INIT_SIZE
Initial embeddings' scale
--learning_rate LEARNING_RATE
Learning rate
- Example: Train TransE model on Know2BIO's whole view
CUDA_VISIBLE_DEVICES=0 python main.py --model TransE --dataset whole --valid 10 --patience 5 --rank 512 --neg_sample_size 150 --optimizer Adam --learning_rate 0.001
Code and README for the benchmarking Know2BIO can be found in benchmark.
Code and README for the construction of Know2BIO can be found in dataset.