remove ParameterSchedulers #1106
Triggered via pull request
November 23, 2023 03:46
Status
Failure
Total duration
49m 34s
Artifacts
–
CI.yml
on: pull_request
Documentation
49m 25s
Matrix: test
Annotations
10 errors
Documentation:
../../../.julia/packages/Documenter/nQAq5/src/utilities/utilities.jl#L44
failed to run `@example` block in src/tutorials/L_shape.md:33-53
```@example L
chain = FullyConnected((2,16,16,16,1), tanh)
pinn = PINN(chain)
sampler = QuasiRandomSampler(300, 30)
strategy = NonAdaptiveTraining()
prob = Sophon.discretize(pde_system, pinn, sampler, strategy)
res = Optimization.solve(prob, BFGS(); maxiters=1000)
using CairoMakie
xs = -1:0.01:1
ys = -1:0.01:1
u_pred = [ifelse(x>0.0 && y>0.0, NaN, pinn.phi([x,y], res.u)[1]) for x in xs, y in ys]
fig, ax, hm = heatmap(xs, ys, u_pred, colormap=:jet)
Colorbar(fig[:, end+1], hm)
fig
save("Lshape.png", fig); nothing # hide
```
exception =
ArgumentError: The passed automatic differentiation backend choice is not available. Please load the corresponding AD package Zygote.
Stacktrace:
[1] instantiate_function(f::Function, x::Optimization.ReInitCache{ComponentArrays.ComponentVector{Float64, Vector{Float64}, Tuple{ComponentArrays.Axis{(layer_1 = ViewAxis(1:48, Axis(weight = ViewAxis(1:32, ShapedAxis((16, 2), NamedTuple())), bias = ViewAxis(33:48, ShapedAxis((16, 1), NamedTuple())))), layer_2 = ViewAxis(49:320, Axis(weight = ViewAxis(1:256, ShapedAxis((16, 16), NamedTuple())), bias = ViewAxis(257:272, ShapedAxis((16, 1), NamedTuple())))), layer_3 = ViewAxis(321:592, Axis(weight = ViewAxis(1:256, ShapedAxis((16, 16), NamedTuple())), bias = ViewAxis(257:272, ShapedAxis((16, 1), NamedTuple())))), layer_4 = ViewAxis(593:609, Axis(weight = ViewAxis(1:16, ShapedAxis((1, 16), NamedTuple())), bias = ViewAxis(17:17, ShapedAxis((1, 1), NamedTuple())))))}}}, Vector{Matrix{Float64}}}, adtype::ADTypes.AutoZygote, p::Int64, num_cons::Int64)
@ Optimization ~/.julia/packages/Optimization/fPVIW/src/function.jl:114
[2] instantiate_function(f::Function, x::Optimization.ReInitCache{ComponentArrays.ComponentVector{Float64, Vector{Float64}, Tuple{ComponentArrays.Axis{(layer_1 = ViewAxis(1:48, Axis(weight = ViewAxis(1:32, ShapedAxis((16, 2), NamedTuple())), bias = ViewAxis(33:48, ShapedAxis((16, 1), NamedTuple())))), layer_2 = ViewAxis(49:320, Axis(weight = ViewAxis(1:256, ShapedAxis((16, 16), NamedTuple())), bias = ViewAxis(257:272, ShapedAxis((16, 1), NamedTuple())))), layer_3 = ViewAxis(321:592, Axis(weight = ViewAxis(1:256, ShapedAxis((16, 16), NamedTuple())), bias = ViewAxis(257:272, ShapedAxis((16, 1), NamedTuple())))), layer_4 = ViewAxis(593:609, Axis(weight = ViewAxis(1:16, ShapedAxis((1, 16), NamedTuple())), bias = ViewAxis(17:17, ShapedAxis((1, 1), NamedTuple())))))}}}, Vector{Matrix{Float64}}}, adtype::ADTypes.AutoZygote, p::Int64)
@ Optimization ~/.julia/packages/Optimization/fPVIW/src/function.jl:106
[3] Optimization.OptimizationCache(prob::SciMLBase.OptimizationProblem{true, SciMLBase.OptimizationFunction{true, ADTypes.AutoZygote, Sophon.var"#full_loss_function#271"{typeof(Sophon.null_additional_loss), PINN{ChainState{Lux.Chain{NamedTuple{(:layer_1, :layer_2, :layer_3, :layer_4), Tuple{Lux.Dense{true, typeof(tanh), Sophon.var"#75#76"{typeof(tanh)}, typeof(WeightInitializers.zeros32)}, Lux.Dense{true, typeof(tanh), Sophon.var"#75#76"{typeof(tanh)}, typeof(WeightInitializers.zeros32)}, Lux.Dense{true, typeof(tanh), Sophon.var"#75#76"{typeof(tanh)}, typeof(WeightInitializers.zeros32)}, Lux.Dense{true, typeof(identity), Sophon.var"#75#76"{typeof(tanh)}, typeof(WeightInitializers.zeros32)}}}, Nothing}, NamedTuple{(:layer_1, :layer_2, :layer_3, :layer_4), NTuple{4, NamedTuple{(), Tuple{}}}}}, NamedTuple{(:layer_1, :layer_2, :layer_3, :layer_4), NTuple{4, NamedTuple{(:weight, :bias), Tuple{Matrix{Float32}, Matrix{Float32}}}}}}, Sophon.var"#277#278"}, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, typeof(SciMLBase.DEFAULT_OBSERVED_NO_TIME), Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing}, ComponentArrays.ComponentVector{Float64, Vector{Float64}, Tuple{ComponentArrays.Axis{(layer_1 = ViewAxis(1:48, Axis(weight = ViewAxis(1:32, ShapedAxis((16, 2), NamedTuple())), bias = ViewAxis(33:48, ShapedAxis((16, 1), NamedTuple())))), layer_2 = ViewAxis(49:320, Axi
|
Documentation:
../../../.julia/packages/Documenter/nQAq5/src/utilities/utilities.jl#L44
failed to run `@example` block in src/tutorials/SchrödingerEquation.md:42-56
```@example Schrödinger
function train(pde_system, prob, sampler, strategy, resample_period = 500, n=10)
bfgs = BFGS()
res = Optimization.solve(prob, bfgs; maxiters=2000)
for i in 1:n
data = Sophon.sample(pde_system, sampler)
prob = remake(prob; u0=res.u, p=data)
res = Optimization.solve(prob, bfgs; maxiters=resample_period)
end
return res
end
res = train(pde_system, prob, sampler, strategy)
```
exception =
ArgumentError: The passed automatic differentiation backend choice is not available. Please load the corresponding AD package Zygote.
Stacktrace:
[1] instantiate_function(f::Function, x::Optimization.ReInitCache{ComponentArrays.ComponentVector{Float64, Vector{Float64}, Tuple{ComponentArrays.Axis{(u = ViewAxis(1:881, Axis(layer_1 = ViewAxis(1:48, Axis(weight = ViewAxis(1:32, ShapedAxis((16, 2), NamedTuple())), bias = ViewAxis(33:48, ShapedAxis((16, 1), NamedTuple())))), layer_2 = ViewAxis(49:320, Axis(weight = ViewAxis(1:256, ShapedAxis((16, 16), NamedTuple())), bias = ViewAxis(257:272, ShapedAxis((16, 1), NamedTuple())))), layer_3 = ViewAxis(321:592, Axis(weight = ViewAxis(1:256, ShapedAxis((16, 16), NamedTuple())), bias = ViewAxis(257:272, ShapedAxis((16, 1), NamedTuple())))), layer_4 = ViewAxis(593:864, Axis(weight = ViewAxis(1:256, ShapedAxis((16, 16), NamedTuple())), bias = ViewAxis(257:272, ShapedAxis((16, 1), NamedTuple())))), layer_5 = ViewAxis(865:881, Axis(weight = ViewAxis(1:16, ShapedAxis((1, 16), NamedTuple())), bias = ViewAxis(17:17, ShapedAxis((1, 1), NamedTuple())))))), v = ViewAxis(882:1762, Axis(layer_1 = ViewAxis(1:48, Axis(weight = ViewAxis(1:32, ShapedAxis((16, 2), NamedTuple())), bias = ViewAxis(33:48, ShapedAxis((16, 1), NamedTuple())))), layer_2 = ViewAxis(49:320, Axis(weight = ViewAxis(1:256, ShapedAxis((16, 16), NamedTuple())), bias = ViewAxis(257:272, ShapedAxis((16, 1), NamedTuple())))), layer_3 = ViewAxis(321:592, Axis(weight = ViewAxis(1:256, ShapedAxis((16, 16), NamedTuple())), bias = ViewAxis(257:272, ShapedAxis((16, 1), NamedTuple())))), layer_4 = ViewAxis(593:864, Axis(weight = ViewAxis(1:256, ShapedAxis((16, 16), NamedTuple())), bias = ViewAxis(257:272, ShapedAxis((16, 1), NamedTuple())))), layer_5 = ViewAxis(865:881, Axis(weight = ViewAxis(1:16, ShapedAxis((1, 16), NamedTuple())), bias = ViewAxis(17:17, ShapedAxis((1, 1), NamedTuple())))))))}}}, Vector{Matrix{Float64}}}, adtype::ADTypes.AutoZygote, p::Int64, num_cons::Int64)
@ Optimization ~/.julia/packages/Optimization/fPVIW/src/function.jl:114
[2] instantiate_function(f::Function, x::Optimization.ReInitCache{ComponentArrays.ComponentVector{Float64, Vector{Float64}, Tuple{ComponentArrays.Axis{(u = ViewAxis(1:881, Axis(layer_1 = ViewAxis(1:48, Axis(weight = ViewAxis(1:32, ShapedAxis((16, 2), NamedTuple())), bias = ViewAxis(33:48, ShapedAxis((16, 1), NamedTuple())))), layer_2 = ViewAxis(49:320, Axis(weight = ViewAxis(1:256, ShapedAxis((16, 16), NamedTuple())), bias = ViewAxis(257:272, ShapedAxis((16, 1), NamedTuple())))), layer_3 = ViewAxis(321:592, Axis(weight = ViewAxis(1:256, ShapedAxis((16, 16), NamedTuple())), bias = ViewAxis(257:272, ShapedAxis((16, 1), NamedTuple())))), layer_4 = ViewAxis(593:864, Axis(weight = ViewAxis(1:256, ShapedAxis((16, 16), NamedTuple())), bias = ViewAxis(257:272, ShapedAxis((16, 1), NamedTuple())))), layer_5 = ViewAxis(865:881, Axis(weight = ViewAxis(1:16, ShapedAxis((1, 16), NamedTuple())), bias = ViewAxis(17:17, ShapedAxis((1, 1), NamedTuple())))))), v = ViewAxis(882:1762, Axis(layer_1 = ViewAxis(1:48, Axis(weight = ViewAxis(1:32, ShapedAxis((16, 2), NamedTuple())), bias = ViewAxis(33:48, ShapedAxis((16, 1), NamedTuple())))), layer_2 = ViewAxis(49:320, Axis(weight = ViewAxis(1:256, ShapedAxis((16, 16), NamedTuple())), bias = ViewAxis(257:272, ShapedAxis((16, 1), NamedTuple())))), layer_3 = ViewAxis(321:592, Axis(weight = ViewAxis(1:256, ShapedAxis((16, 16), NamedTuple())), bias = ViewAxis(257:272, ShapedAxis((16, 1), NamedTuple())))), l
|
Documentation:
../../../.julia/packages/Documenter/nQAq5/src/utilities/utilities.jl#L44
failed to run `@example` block in src/tutorials/SchrödingerEquation.md:58-73
```@example Schrödinger
phi = pinn.phi
ps = res.u
xs, ts= [infimum(d.domain):0.01:supremum(d.domain) for d in pde_system.domain]
u = [sum(phi.u(([x,t]), ps.u)) for x in xs, t in ts]
v = [sum(phi.v(([x,t]), ps.v)) for x in xs, t in ts]
ψ = @. sqrt(u^2+ v^2)
axis = (xlabel="t", ylabel="x", title="u")
fig, ax1, hm1 = heatmap(ts, xs, u', axis=axis)
ax2, hm2= heatmap(fig[1, end+1], ts, xs, v', axis= merge(axis, (; title="v")))
display(fig)
save("uv.png", fig); nothing # hide
```
exception =
UndefVarError: `res` not defined
Stacktrace:
[1] top-level scope
@ SchrödingerEquation.md:60
[2] eval
@ ./boot.jl:370 [inlined]
[3] #54
@ ~/.julia/packages/Documenter/nQAq5/src/expander_pipeline.jl:738 [inlined]
[4] cd(f::Documenter.var"#54#56"{Module, Expr}, dir::String)
@ Base.Filesystem ./file.jl:112
[5] (::Documenter.var"#53#55"{Documenter.Page, Module, Expr})()
@ Documenter ~/.julia/packages/Documenter/nQAq5/src/expander_pipeline.jl:737
[6] (::IOCapture.var"#3#5"{DataType, Documenter.var"#53#55"{Documenter.Page, Module, Expr}, Task, IOContext{Base.PipeEndpoint}, IOContext{Base.PipeEndpoint}, IOContext{Base.PipeEndpoint}, IOContext{Base.PipeEndpoint}})()
@ IOCapture ~/.julia/packages/IOCapture/8Uj7o/src/IOCapture.jl:119
[7] with_logstate(f::Function, logstate::Any)
@ Base.CoreLogging ./logging.jl:514
[8] with_logger
@ ./logging.jl:626 [inlined]
[9] capture(f::Documenter.var"#53#55"{Documenter.Page, Module, Expr}; rethrow::Type, color::Bool)
@ IOCapture ~/.julia/packages/IOCapture/8Uj7o/src/IOCapture.jl:116
[10] runner(#unused#::Type{Documenter.Expanders.ExampleBlocks}, node::MarkdownAST.Node{Nothing}, page::Documenter.Page, doc::Documenter.Document)
@ Documenter ~/.julia/packages/Documenter/nQAq5/src/expander_pipeline.jl:736
|
Documentation:
../../../.julia/packages/Documenter/nQAq5/src/utilities/utilities.jl#L44
failed to run `@example` block in src/tutorials/SchrödingerEquation.md:76-82
```@example Schrödinger
axis = (xlabel="t", ylabel="x", title="ψ")
fig, ax1, hm1 = heatmap(ts, xs, ψ', axis=axis, colormap=:jet)
Colorbar(fig[:, end+1], hm1)
display(fig)
save("phi.png", fig); nothing # hide
```
exception =
UndefVarError: `ψ` not defined
Stacktrace:
[1] top-level scope
@ SchrödingerEquation.md:78
[2] eval
@ ./boot.jl:370 [inlined]
[3] #54
@ ~/.julia/packages/Documenter/nQAq5/src/expander_pipeline.jl:738 [inlined]
[4] cd(f::Documenter.var"#54#56"{Module, Expr}, dir::String)
@ Base.Filesystem ./file.jl:112
[5] (::Documenter.var"#53#55"{Documenter.Page, Module, Expr})()
@ Documenter ~/.julia/packages/Documenter/nQAq5/src/expander_pipeline.jl:737
[6] (::IOCapture.var"#3#5"{DataType, Documenter.var"#53#55"{Documenter.Page, Module, Expr}, Task, IOContext{Base.PipeEndpoint}, IOContext{Base.PipeEndpoint}, IOContext{Base.PipeEndpoint}, IOContext{Base.PipeEndpoint}})()
@ IOCapture ~/.julia/packages/IOCapture/8Uj7o/src/IOCapture.jl:119
[7] with_logstate(f::Function, logstate::Any)
@ Base.CoreLogging ./logging.jl:514
[8] with_logger
@ ./logging.jl:626 [inlined]
[9] capture(f::Documenter.var"#53#55"{Documenter.Page, Module, Expr}; rethrow::Type, color::Bool)
@ IOCapture ~/.julia/packages/IOCapture/8Uj7o/src/IOCapture.jl:116
[10] runner(#unused#::Type{Documenter.Expanders.ExampleBlocks}, node::MarkdownAST.Node{Nothing}, page::Documenter.Page, doc::Documenter.Document)
@ Documenter ~/.julia/packages/Documenter/nQAq5/src/expander_pipeline.jl:736
|
Documentation:
../../../.julia/packages/Documenter/nQAq5/src/utilities/utilities.jl#L44
failed to run `@example` block in src/tutorials/SchrödingerEquation.md:90-99
```@example Schrödinger
using StatsBase
data = vec([[x, t] for x in xs, t in ts])
wv = vec(ψ)
new_data = wsample(data, wv, 500)
new_data = reduce(hcat, new_data)
fig, ax = scatter(new_data[2,:], new_data[1,:])
save("data.png", fig); nothing # hide
```
exception =
UndefVarError: `xs` not defined
Stacktrace:
[1] top-level scope
@ SchrödingerEquation.md:93
[2] eval
@ ./boot.jl:370 [inlined]
[3] #54
@ ~/.julia/packages/Documenter/nQAq5/src/expander_pipeline.jl:738 [inlined]
[4] cd(f::Documenter.var"#54#56"{Module, Expr}, dir::String)
@ Base.Filesystem ./file.jl:112
[5] (::Documenter.var"#53#55"{Documenter.Page, Module, Expr})()
@ Documenter ~/.julia/packages/Documenter/nQAq5/src/expander_pipeline.jl:737
[6] (::IOCapture.var"#3#5"{DataType, Documenter.var"#53#55"{Documenter.Page, Module, Expr}, Task, IOContext{Base.PipeEndpoint}, IOContext{Base.PipeEndpoint}, IOContext{Base.PipeEndpoint}, IOContext{Base.PipeEndpoint}})()
@ IOCapture ~/.julia/packages/IOCapture/8Uj7o/src/IOCapture.jl:119
[7] with_logstate(f::Function, logstate::Any)
@ Base.CoreLogging ./logging.jl:514
[8] with_logger
@ ./logging.jl:626 [inlined]
[9] capture(f::Documenter.var"#53#55"{Documenter.Page, Module, Expr}; rethrow::Type, color::Bool)
@ IOCapture ~/.julia/packages/IOCapture/8Uj7o/src/IOCapture.jl:116
[10] runner(#unused#::Type{Documenter.Expanders.ExampleBlocks}, node::MarkdownAST.Node{Nothing}, page::Documenter.Page, doc::Documenter.Document)
@ Documenter ~/.julia/packages/Documenter/nQAq5/src/expander_pipeline.jl:736
|
Documentation:
../../../.julia/packages/Documenter/nQAq5/src/utilities/utilities.jl#L44
failed to run `@example` block in src/tutorials/SchrödingerEquation.md:102-107
```@example Schrödinger
prob.p[1] = new_data
prob.p[2] = new_data
prob = remake(prob; u0 = res.u)
# res = Optimization.solve(prob, bfgs; maxiters=1000)
```
exception =
UndefVarError: `new_data` not defined
Stacktrace:
[1] top-level scope
@ SchrödingerEquation.md:103
[2] eval
@ ./boot.jl:370 [inlined]
[3] #54
@ ~/.julia/packages/Documenter/nQAq5/src/expander_pipeline.jl:738 [inlined]
[4] cd(f::Documenter.var"#54#56"{Module, Expr}, dir::String)
@ Base.Filesystem ./file.jl:112
[5] (::Documenter.var"#53#55"{Documenter.Page, Module, Expr})()
@ Documenter ~/.julia/packages/Documenter/nQAq5/src/expander_pipeline.jl:737
[6] (::IOCapture.var"#3#5"{DataType, Documenter.var"#53#55"{Documenter.Page, Module, Expr}, Task, IOContext{Base.PipeEndpoint}, IOContext{Base.PipeEndpoint}, IOContext{Base.PipeEndpoint}, IOContext{Base.PipeEndpoint}})()
@ IOCapture ~/.julia/packages/IOCapture/8Uj7o/src/IOCapture.jl:119
[7] with_logstate(f::Function, logstate::Any)
@ Base.CoreLogging ./logging.jl:514
[8] with_logger
@ ./logging.jl:626 [inlined]
[9] capture(f::Documenter.var"#53#55"{Documenter.Page, Module, Expr}; rethrow::Type, color::Bool)
@ IOCapture ~/.julia/packages/IOCapture/8Uj7o/src/IOCapture.jl:116
[10] runner(#unused#::Type{Documenter.Expanders.ExampleBlocks}, node::MarkdownAST.Node{Nothing}, page::Documenter.Page, doc::Documenter.Document)
@ Documenter ~/.julia/packages/Documenter/nQAq5/src/expander_pipeline.jl:736
|
Documentation:
../../../.julia/packages/Documenter/nQAq5/src/utilities/utilities.jl#L44
failed to run `@example` block in src/tutorials/allen_cahn.md:38-53
```@example allen
function train(allen, prob, sampler, strategy)
bfgs = BFGS()
res = Optimization.solve(prob, bfgs; maxiters=2000)
for tmax in [0.5, 0.75, 1.0]
allen.domain[2] = t ∈ 0.0..tmax
data = Sophon.sample(allen, sampler)
prob = remake(prob; u0=res.u, p=data)
res = Optimization.solve(prob, bfgs; maxiters=2000)
end
return res
end
res = train(allen, prob, sampler, strategy)
```
exception =
ArgumentError: The passed automatic differentiation backend choice is not available. Please load the corresponding AD package Zygote.
Stacktrace:
[1] instantiate_function(f::Function, x::Optimization.ReInitCache{ComponentArrays.ComponentVector{Float64, Vector{Float64}, Tuple{ComponentArrays.Axis{(layer_1 = ViewAxis(1:48, Axis(weight = ViewAxis(1:32, ShapedAxis((16, 2), NamedTuple())), bias = ViewAxis(33:48, ShapedAxis((16, 1), NamedTuple())))), layer_2 = ViewAxis(49:320, Axis(weight = ViewAxis(1:256, ShapedAxis((16, 16), NamedTuple())), bias = ViewAxis(257:272, ShapedAxis((16, 1), NamedTuple())))), layer_3 = ViewAxis(321:592, Axis(weight = ViewAxis(1:256, ShapedAxis((16, 16), NamedTuple())), bias = ViewAxis(257:272, ShapedAxis((16, 1), NamedTuple())))), layer_4 = ViewAxis(593:864, Axis(weight = ViewAxis(1:256, ShapedAxis((16, 16), NamedTuple())), bias = ViewAxis(257:272, ShapedAxis((16, 1), NamedTuple())))), layer_5 = ViewAxis(865:881, Axis(weight = ViewAxis(1:16, ShapedAxis((1, 16), NamedTuple())), bias = ViewAxis(17:17, ShapedAxis((1, 1), NamedTuple())))))}}}, Vector{Matrix{Float64}}}, adtype::ADTypes.AutoZygote, p::Int64, num_cons::Int64)
@ Optimization ~/.julia/packages/Optimization/fPVIW/src/function.jl:114
[2] instantiate_function(f::Function, x::Optimization.ReInitCache{ComponentArrays.ComponentVector{Float64, Vector{Float64}, Tuple{ComponentArrays.Axis{(layer_1 = ViewAxis(1:48, Axis(weight = ViewAxis(1:32, ShapedAxis((16, 2), NamedTuple())), bias = ViewAxis(33:48, ShapedAxis((16, 1), NamedTuple())))), layer_2 = ViewAxis(49:320, Axis(weight = ViewAxis(1:256, ShapedAxis((16, 16), NamedTuple())), bias = ViewAxis(257:272, ShapedAxis((16, 1), NamedTuple())))), layer_3 = ViewAxis(321:592, Axis(weight = ViewAxis(1:256, ShapedAxis((16, 16), NamedTuple())), bias = ViewAxis(257:272, ShapedAxis((16, 1), NamedTuple())))), layer_4 = ViewAxis(593:864, Axis(weight = ViewAxis(1:256, ShapedAxis((16, 16), NamedTuple())), bias = ViewAxis(257:272, ShapedAxis((16, 1), NamedTuple())))), layer_5 = ViewAxis(865:881, Axis(weight = ViewAxis(1:16, ShapedAxis((1, 16), NamedTuple())), bias = ViewAxis(17:17, ShapedAxis((1, 1), NamedTuple())))))}}}, Vector{Matrix{Float64}}}, adtype::ADTypes.AutoZygote, p::Int64)
@ Optimization ~/.julia/packages/Optimization/fPVIW/src/function.jl:106
[3] Optimization.OptimizationCache(prob::SciMLBase.OptimizationProblem{true, SciMLBase.OptimizationFunction{true, ADTypes.AutoZygote, Sophon.var"#full_loss_function#271"{typeof(Sophon.null_additional_loss), PINN{ChainState{Lux.Chain{NamedTuple{(:layer_1, :layer_2, :layer_3, :layer_4, :layer_5), Tuple{Lux.Dense{true, typeof(tanh), Sophon.var"#75#76"{typeof(tanh)}, typeof(WeightInitializers.zeros32)}, Lux.Dense{true, typeof(tanh), Sophon.var"#75#76"{typeof(tanh)}, typeof(WeightInitializers.zeros32)}, Lux.Dense{true, typeof(tanh), Sophon.var"#75#76"{typeof(tanh)}, typeof(WeightInitializers.zeros32)}, Lux.Dense{true, typeof(tanh), Sophon.var"#75#76"{typeof(tanh)}, typeof(WeightInitializers.zeros32)}, Lux.Dense{true, typeof(identity), Sophon.var"#75#76"{typeof(tanh)}, typeof(WeightInitializers.zeros32)}}}, Nothing}, NamedTuple{(:layer_1, :layer_2, :layer_3, :layer_4, :layer_5), NTuple{5, NamedTuple{(), Tuple{}}}}}, NamedTuple{(:layer_1, :layer_2, :layer_3, :layer_4, :layer_5), NTuple{5, NamedTuple{(:weight, :bias), Tuple{Matrix{Float32}, Matrix{Float32}}}}}}, Sophon.var"#281#282"}, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, typeof(SciMLBase.D
|
Documentation:
../../../.julia/packages/Documenter/nQAq5/src/utilities/utilities.jl#L44
failed to run `@example` block in src/tutorials/allen_cahn.md:56-66
```@example allen
using CairoMakie
phi = pinn.phi
xs, ts = [infimum(d.domain):0.01:supremum(d.domain) for d in allen.domain]
axis = (xlabel="t", ylabel="x", title="Prediction")
u_pred = [sum(pinn.phi([x, t], res.u)) for x in xs, t in ts]
fig, ax, hm = heatmap(ts, xs, u_pred', axis=axis)
save("allen.png", fig); nothing # hide
```
exception =
UndefVarError: `res` not defined
Stacktrace:
[1] (::Main.__atexample__named__allen.var"#3#4")(::Tuple{Float64, Float64})
@ Main.__atexample__named__allen ./none:0
[2] iterate
@ ./generator.jl:47 [inlined]
[3] collect(itr::Base.Generator{Base.Iterators.ProductIterator{Tuple{StepRangeLen{Float64, Base.TwicePrecision{Float64}, Base.TwicePrecision{Float64}, Int64}, StepRangeLen{Float64, Base.TwicePrecision{Float64}, Base.TwicePrecision{Float64}, Int64}}}, Main.__atexample__named__allen.var"#3#4"})
@ Base ./array.jl:782
[4] top-level scope
@ allen_cahn.md:62
[5] eval
@ ./boot.jl:370 [inlined]
[6] #54
@ ~/.julia/packages/Documenter/nQAq5/src/expander_pipeline.jl:738 [inlined]
[7] cd(f::Documenter.var"#54#56"{Module, Expr}, dir::String)
@ Base.Filesystem ./file.jl:112
[8] (::Documenter.var"#53#55"{Documenter.Page, Module, Expr})()
@ Documenter ~/.julia/packages/Documenter/nQAq5/src/expander_pipeline.jl:737
[9] (::IOCapture.var"#3#5"{DataType, Documenter.var"#53#55"{Documenter.Page, Module, Expr}, Task, IOContext{Base.PipeEndpoint}, IOContext{Base.PipeEndpoint}, IOContext{Base.PipeEndpoint}, IOContext{Base.PipeEndpoint}})()
@ IOCapture ~/.julia/packages/IOCapture/8Uj7o/src/IOCapture.jl:119
[10] with_logstate(f::Function, logstate::Any)
@ Base.CoreLogging ./logging.jl:514
[11] with_logger
@ ./logging.jl:626 [inlined]
[12] capture(f::Documenter.var"#53#55"{Documenter.Page, Module, Expr}; rethrow::Type, color::Bool)
@ IOCapture ~/.julia/packages/IOCapture/8Uj7o/src/IOCapture.jl:116
[13] runner(#unused#::Type{Documenter.Expanders.ExampleBlocks}, node::MarkdownAST.Node{Nothing}, page::Documenter.Page, doc::Documenter.Document)
@ Documenter ~/.julia/packages/Documenter/nQAq5/src/expander_pipeline.jl:736
|
Documentation:
../../../.julia/packages/Documenter/nQAq5/src/utilities/utilities.jl#L44
failed to run `@example` block in src/tutorials/convection.md:43-51
```@example convection
sampler = QuasiRandomSampler(500, 100) # data points
strategy = NonAdaptiveTraining(1 , 500) # weights
pinn = PINN(chain)
prob = Sophon.discretize(convection, pinn, sampler, strategy)
@time res = Optimization.solve(prob, BFGS(); maxiters = 1000)
```
exception =
ArgumentError: The passed automatic differentiation backend choice is not available. Please load the corresponding AD package Zygote.
Stacktrace:
[1] instantiate_function(f::Function, x::Optimization.ReInitCache{ComponentArrays.ComponentVector{Float64, Vector{Float64}, Tuple{ComponentArrays.Axis{(filters = ViewAxis(1:128, Axis(filter_1 = ViewAxis(1:32, Axis(bias = ViewAxis(1:32, ShapedAxis((32, 1), NamedTuple())),)), filter_2 = ViewAxis(33:64, Axis(bias = ViewAxis(1:32, ShapedAxis((32, 1), NamedTuple())),)), filter_3 = ViewAxis(65:96, Axis(bias = ViewAxis(1:32, ShapedAxis((32, 1), NamedTuple())),)), filter_4 = ViewAxis(97:128, Axis(bias = ViewAxis(1:32, ShapedAxis((32, 1), NamedTuple())),)))), linear_layers = ViewAxis(129:3296, Axis(layer_1 = ViewAxis(1:1056, Axis(weight = ViewAxis(1:1024, ShapedAxis((32, 32), NamedTuple())), bias = ViewAxis(1025:1056, ShapedAxis((32, 1), NamedTuple())))), layer_2 = ViewAxis(1057:2112, Axis(weight = ViewAxis(1:1024, ShapedAxis((32, 32), NamedTuple())), bias = ViewAxis(1025:1056, ShapedAxis((32, 1), NamedTuple())))), layer_3 = ViewAxis(2113:3168, Axis(weight = ViewAxis(1:1024, ShapedAxis((32, 32), NamedTuple())), bias = ViewAxis(1025:1056, ShapedAxis((32, 1), NamedTuple())))))), output_layer = ViewAxis(3297:3329, Axis(weight = ViewAxis(1:32, ShapedAxis((1, 32), NamedTuple())), bias = ViewAxis(33:33, ShapedAxis((1, 1), NamedTuple())))))}}}, Vector{Matrix{Float64}}}, adtype::ADTypes.AutoZygote, p::Int64, num_cons::Int64)
@ Optimization ~/.julia/packages/Optimization/fPVIW/src/function.jl:114
[2] instantiate_function(f::Function, x::Optimization.ReInitCache{ComponentArrays.ComponentVector{Float64, Vector{Float64}, Tuple{ComponentArrays.Axis{(filters = ViewAxis(1:128, Axis(filter_1 = ViewAxis(1:32, Axis(bias = ViewAxis(1:32, ShapedAxis((32, 1), NamedTuple())),)), filter_2 = ViewAxis(33:64, Axis(bias = ViewAxis(1:32, ShapedAxis((32, 1), NamedTuple())),)), filter_3 = ViewAxis(65:96, Axis(bias = ViewAxis(1:32, ShapedAxis((32, 1), NamedTuple())),)), filter_4 = ViewAxis(97:128, Axis(bias = ViewAxis(1:32, ShapedAxis((32, 1), NamedTuple())),)))), linear_layers = ViewAxis(129:3296, Axis(layer_1 = ViewAxis(1:1056, Axis(weight = ViewAxis(1:1024, ShapedAxis((32, 32), NamedTuple())), bias = ViewAxis(1025:1056, ShapedAxis((32, 1), NamedTuple())))), layer_2 = ViewAxis(1057:2112, Axis(weight = ViewAxis(1:1024, ShapedAxis((32, 32), NamedTuple())), bias = ViewAxis(1025:1056, ShapedAxis((32, 1), NamedTuple())))), layer_3 = ViewAxis(2113:3168, Axis(weight = ViewAxis(1:1024, ShapedAxis((32, 32), NamedTuple())), bias = ViewAxis(1025:1056, ShapedAxis((32, 1), NamedTuple())))))), output_layer = ViewAxis(3297:3329, Axis(weight = ViewAxis(1:32, ShapedAxis((1, 32), NamedTuple())), bias = ViewAxis(33:33, ShapedAxis((1, 1), NamedTuple())))))}}}, Vector{Matrix{Float64}}}, adtype::ADTypes.AutoZygote, p::Int64)
@ Optimization ~/.julia/packages/Optimization/fPVIW/src/function.jl:106
[3] Optimization.OptimizationCache(prob::SciMLBase.OptimizationProblem{true, SciMLBase.OptimizationFunction{true, ADTypes.AutoZygote, Sophon.var"#full_loss_function#271"{typeof(Sophon.null_additional_loss), PINN{ChainState{Sophon.MultiplicativeFilterNet{Lux.BranchLayer{NamedTuple{(:filter_1, :filter_2, :filter_3, :filter_4), NTuple{4, DiscreteFourierFeature{Int64, Int64}}}, Union{Nothing, String, Symbol}}, Lux.PairwiseFusion{NamedTuple{(:layer_1, :layer_2, :layer_3), Tuple{Lux.Dense{true, typeof(identity), Sophon.var"#75#76"{typeof(sin)}, typeof(WeightInitializers.zeros32)}, Lux.Dense{true, typeof(identity), Sophon.var"#75#76"{typeof(sin)}, typeof(WeightInitializers.zeros32)}, Lux.Dense{true, typeof(identity), Sophon.var"#75#76"{typeof(sin)}, typeof(W
|
Documentation:
../../../.julia/packages/Documenter/nQAq5/src/utilities/utilities.jl#L44
failed to run `@example` block in src/tutorials/convection.md:55-66
```@example convection
phi = pinn.phi
xs, ts= [infimum(d.domain):0.01:supremum(d.domain) for d in domains]
u_pred = [sum(phi([x,t],res.u)) for x in xs, t in ts]
u_real = u_analytic.(xs,ts')
fig, ax, hm = heatmap(ts, xs, u_pred', axis=(xlabel="t", ylabel="x", title="c = $c"))
ax2, hm2 = heatmap(fig[1,end+1], ts,xs, abs.(u_pred' .- u_real'), axis = (xlabel="t", ylabel="x", title="Absolute error"))
Colorbar(fig[:, end+1], hm2)
display(fig)
save("convection.png", fig); nothing # hide
```
exception =
UndefVarError: `res` not defined
Stacktrace:
[1] (::Main.__atexample__named__convection.var"#3#4")(::Tuple{Float64, Float64})
@ Main.__atexample__named__convection ./none:0
[2] iterate
@ ./generator.jl:47 [inlined]
[3] collect(itr::Base.Generator{Base.Iterators.ProductIterator{Tuple{StepRangeLen{Float64, Base.TwicePrecision{Float64}, Base.TwicePrecision{Float64}, Int64}, StepRangeLen{Float64, Base.TwicePrecision{Float64}, Base.TwicePrecision{Float64}, Int64}}}, Main.__atexample__named__convection.var"#3#4"})
@ Base ./array.jl:782
[4] top-level scope
@ convection.md:59
[5] eval
@ ./boot.jl:370 [inlined]
[6] #54
@ ~/.julia/packages/Documenter/nQAq5/src/expander_pipeline.jl:738 [inlined]
[7] cd(f::Documenter.var"#54#56"{Module, Expr}, dir::String)
@ Base.Filesystem ./file.jl:112
[8] (::Documenter.var"#53#55"{Documenter.Page, Module, Expr})()
@ Documenter ~/.julia/packages/Documenter/nQAq5/src/expander_pipeline.jl:737
[9] (::IOCapture.var"#3#5"{DataType, Documenter.var"#53#55"{Documenter.Page, Module, Expr}, Task, IOContext{Base.PipeEndpoint}, IOContext{Base.PipeEndpoint}, IOContext{Base.PipeEndpoint}, IOContext{Base.PipeEndpoint}})()
@ IOCapture ~/.julia/packages/IOCapture/8Uj7o/src/IOCapture.jl:119
[10] with_logstate(f::Function, logstate::Any)
@ Base.CoreLogging ./logging.jl:514
[11] with_logger
@ ./logging.jl:626 [inlined]
[12] capture(f::Documenter.var"#53#55"{Documenter.Page, Module, Expr}; rethrow::Type, color::Bool)
@ IOCapture ~/.julia/packages/IOCapture/8Uj7o/src/IOCapture.jl:116
[13] runner(#unused#::Type{Documenter.Expanders.ExampleBlocks}, node::MarkdownAST.Node{Nothing}, page::Documenter.Page, doc::Documenter.Document)
@ Documenter ~/.julia/packages/Documenter/nQAq5/src/expander_pipeline.jl:736
|