forked from huggingface/diffusers
-
Notifications
You must be signed in to change notification settings - Fork 7
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[AltDiffusion] add tests (huggingface#1311)
* being tests * fix model ids * don't use safety checker in tests * add im2img2 tests * fix integration tests * integration tests * style * add sentencepiece in test dep * quality * 4 decimalk points * fix im2img test * increase the tok slightly
- Loading branch information
1 parent
327ddc8
commit 46893ad
Showing
5 changed files
with
606 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Empty file.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,347 @@ | ||
# coding=utf-8 | ||
# Copyright 2022 HuggingFace Inc. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import gc | ||
import random | ||
import unittest | ||
|
||
import numpy as np | ||
import torch | ||
|
||
from diffusers import AltDiffusionPipeline, AutoencoderKL, DDIMScheduler, PNDMScheduler, UNet2DConditionModel | ||
from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( | ||
RobertaSeriesConfig, | ||
RobertaSeriesModelWithTransformation, | ||
) | ||
from diffusers.utils import floats_tensor, slow, torch_device | ||
from diffusers.utils.testing_utils import require_torch_gpu | ||
from transformers import XLMRobertaTokenizer | ||
|
||
from ...test_pipelines_common import PipelineTesterMixin | ||
|
||
|
||
torch.backends.cuda.matmul.allow_tf32 = False | ||
|
||
|
||
class AltDiffusionPipelineFastTests(PipelineTesterMixin, unittest.TestCase): | ||
def tearDown(self): | ||
# clean up the VRAM after each test | ||
super().tearDown() | ||
gc.collect() | ||
torch.cuda.empty_cache() | ||
|
||
@property | ||
def dummy_image(self): | ||
batch_size = 1 | ||
num_channels = 3 | ||
sizes = (32, 32) | ||
|
||
image = floats_tensor((batch_size, num_channels) + sizes, rng=random.Random(0)).to(torch_device) | ||
return image | ||
|
||
@property | ||
def dummy_cond_unet(self): | ||
torch.manual_seed(0) | ||
model = UNet2DConditionModel( | ||
block_out_channels=(32, 64), | ||
layers_per_block=2, | ||
sample_size=32, | ||
in_channels=4, | ||
out_channels=4, | ||
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), | ||
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), | ||
cross_attention_dim=32, | ||
) | ||
return model | ||
|
||
@property | ||
def dummy_cond_unet_inpaint(self): | ||
torch.manual_seed(0) | ||
model = UNet2DConditionModel( | ||
block_out_channels=(32, 64), | ||
layers_per_block=2, | ||
sample_size=32, | ||
in_channels=9, | ||
out_channels=4, | ||
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), | ||
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), | ||
cross_attention_dim=32, | ||
) | ||
return model | ||
|
||
@property | ||
def dummy_vae(self): | ||
torch.manual_seed(0) | ||
model = AutoencoderKL( | ||
block_out_channels=[32, 64], | ||
in_channels=3, | ||
out_channels=3, | ||
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], | ||
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], | ||
latent_channels=4, | ||
) | ||
return model | ||
|
||
@property | ||
def dummy_text_encoder(self): | ||
torch.manual_seed(0) | ||
config = RobertaSeriesConfig( | ||
hidden_size=32, | ||
project_dim=32, | ||
intermediate_size=37, | ||
layer_norm_eps=1e-05, | ||
num_attention_heads=4, | ||
num_hidden_layers=5, | ||
vocab_size=5002, | ||
) | ||
return RobertaSeriesModelWithTransformation(config) | ||
|
||
@property | ||
def dummy_extractor(self): | ||
def extract(*args, **kwargs): | ||
class Out: | ||
def __init__(self): | ||
self.pixel_values = torch.ones([0]) | ||
|
||
def to(self, device): | ||
self.pixel_values.to(device) | ||
return self | ||
|
||
return Out() | ||
|
||
return extract | ||
|
||
def test_alt_diffusion_ddim(self): | ||
device = "cpu" # ensure determinism for the device-dependent torch.Generator | ||
unet = self.dummy_cond_unet | ||
scheduler = DDIMScheduler( | ||
beta_start=0.00085, | ||
beta_end=0.012, | ||
beta_schedule="scaled_linear", | ||
clip_sample=False, | ||
set_alpha_to_one=False, | ||
) | ||
|
||
vae = self.dummy_vae | ||
bert = self.dummy_text_encoder | ||
tokenizer = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta") | ||
tokenizer.model_max_length = 77 | ||
|
||
# make sure here that pndm scheduler skips prk | ||
alt_pipe = AltDiffusionPipeline( | ||
unet=unet, | ||
scheduler=scheduler, | ||
vae=vae, | ||
text_encoder=bert, | ||
tokenizer=tokenizer, | ||
safety_checker=None, | ||
feature_extractor=self.dummy_extractor, | ||
) | ||
alt_pipe = alt_pipe.to(device) | ||
alt_pipe.set_progress_bar_config(disable=None) | ||
|
||
prompt = "A photo of an astronaut" | ||
|
||
generator = torch.Generator(device=device).manual_seed(0) | ||
output = alt_pipe([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np") | ||
image = output.images | ||
|
||
generator = torch.Generator(device=device).manual_seed(0) | ||
image_from_tuple = alt_pipe( | ||
[prompt], | ||
generator=generator, | ||
guidance_scale=6.0, | ||
num_inference_steps=2, | ||
output_type="np", | ||
return_dict=False, | ||
)[0] | ||
|
||
image_slice = image[0, -3:, -3:, -1] | ||
image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1] | ||
|
||
assert image.shape == (1, 128, 128, 3) | ||
expected_slice = np.array( | ||
[0.49249017, 0.46064827, 0.4790093, 0.50883967, 0.4811985, 0.51540506, 0.5084924, 0.4860553, 0.47318557] | ||
) | ||
|
||
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 | ||
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 | ||
|
||
def test_alt_diffusion_pndm(self): | ||
device = "cpu" # ensure determinism for the device-dependent torch.Generator | ||
unet = self.dummy_cond_unet | ||
scheduler = PNDMScheduler(skip_prk_steps=True) | ||
vae = self.dummy_vae | ||
bert = self.dummy_text_encoder | ||
tokenizer = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta") | ||
tokenizer.model_max_length = 77 | ||
|
||
# make sure here that pndm scheduler skips prk | ||
alt_pipe = AltDiffusionPipeline( | ||
unet=unet, | ||
scheduler=scheduler, | ||
vae=vae, | ||
text_encoder=bert, | ||
tokenizer=tokenizer, | ||
safety_checker=None, | ||
feature_extractor=self.dummy_extractor, | ||
) | ||
alt_pipe = alt_pipe.to(device) | ||
alt_pipe.set_progress_bar_config(disable=None) | ||
|
||
prompt = "A painting of a squirrel eating a burger" | ||
generator = torch.Generator(device=device).manual_seed(0) | ||
output = alt_pipe([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np") | ||
|
||
image = output.images | ||
|
||
generator = torch.Generator(device=device).manual_seed(0) | ||
image_from_tuple = alt_pipe( | ||
[prompt], | ||
generator=generator, | ||
guidance_scale=6.0, | ||
num_inference_steps=2, | ||
output_type="np", | ||
return_dict=False, | ||
)[0] | ||
|
||
image_slice = image[0, -3:, -3:, -1] | ||
image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1] | ||
|
||
assert image.shape == (1, 128, 128, 3) | ||
expected_slice = np.array( | ||
[0.4786532, 0.45791715, 0.47507674, 0.50763345, 0.48375353, 0.515062, 0.51244247, 0.48673993, 0.47105807] | ||
) | ||
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 | ||
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 | ||
|
||
@unittest.skipIf(torch_device != "cuda", "This test requires a GPU") | ||
def test_alt_diffusion_fp16(self): | ||
"""Test that stable diffusion works with fp16""" | ||
unet = self.dummy_cond_unet | ||
scheduler = PNDMScheduler(skip_prk_steps=True) | ||
vae = self.dummy_vae | ||
bert = self.dummy_text_encoder | ||
tokenizer = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta") | ||
tokenizer.model_max_length = 77 | ||
|
||
# put models in fp16 | ||
unet = unet.half() | ||
vae = vae.half() | ||
bert = bert.half() | ||
|
||
# make sure here that pndm scheduler skips prk | ||
alt_pipe = AltDiffusionPipeline( | ||
unet=unet, | ||
scheduler=scheduler, | ||
vae=vae, | ||
text_encoder=bert, | ||
tokenizer=tokenizer, | ||
safety_checker=None, | ||
feature_extractor=self.dummy_extractor, | ||
) | ||
alt_pipe = alt_pipe.to(torch_device) | ||
alt_pipe.set_progress_bar_config(disable=None) | ||
|
||
prompt = "A painting of a squirrel eating a burger" | ||
generator = torch.Generator(device=torch_device).manual_seed(0) | ||
image = alt_pipe([prompt], generator=generator, num_inference_steps=2, output_type="np").images | ||
|
||
assert image.shape == (1, 128, 128, 3) | ||
|
||
|
||
@slow | ||
@require_torch_gpu | ||
class AltDiffusionPipelineIntegrationTests(unittest.TestCase): | ||
def tearDown(self): | ||
# clean up the VRAM after each test | ||
super().tearDown() | ||
gc.collect() | ||
torch.cuda.empty_cache() | ||
|
||
def test_alt_diffusion(self): | ||
# make sure here that pndm scheduler skips prk | ||
alt_pipe = AltDiffusionPipeline.from_pretrained("BAAI/AltDiffusion", safety_checker=None) | ||
alt_pipe = alt_pipe.to(torch_device) | ||
alt_pipe.set_progress_bar_config(disable=None) | ||
|
||
prompt = "A painting of a squirrel eating a burger" | ||
generator = torch.Generator(device=torch_device).manual_seed(0) | ||
with torch.autocast("cuda"): | ||
output = alt_pipe( | ||
[prompt], generator=generator, guidance_scale=6.0, num_inference_steps=20, output_type="np" | ||
) | ||
|
||
image = output.images | ||
|
||
image_slice = image[0, -3:, -3:, -1] | ||
|
||
assert image.shape == (1, 512, 512, 3) | ||
expected_slice = np.array( | ||
[0.8720703, 0.87109375, 0.87402344, 0.87109375, 0.8779297, 0.8925781, 0.8823242, 0.8808594, 0.8613281] | ||
) | ||
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 | ||
|
||
def test_alt_diffusion_fast_ddim(self): | ||
scheduler = DDIMScheduler.from_pretrained("BAAI/AltDiffusion", subfolder="scheduler") | ||
|
||
alt_pipe = AltDiffusionPipeline.from_pretrained("BAAI/AltDiffusion", scheduler=scheduler, safety_checker=None) | ||
alt_pipe = alt_pipe.to(torch_device) | ||
alt_pipe.set_progress_bar_config(disable=None) | ||
|
||
prompt = "A painting of a squirrel eating a burger" | ||
generator = torch.Generator(device=torch_device).manual_seed(0) | ||
|
||
with torch.autocast("cuda"): | ||
output = alt_pipe([prompt], generator=generator, num_inference_steps=2, output_type="numpy") | ||
image = output.images | ||
|
||
image_slice = image[0, -3:, -3:, -1] | ||
|
||
assert image.shape == (1, 512, 512, 3) | ||
expected_slice = np.array( | ||
[0.9267578, 0.9301758, 0.9013672, 0.9345703, 0.92578125, 0.94433594, 0.9423828, 0.9423828, 0.9160156] | ||
) | ||
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 | ||
|
||
def test_alt_diffusion_text2img_pipeline_fp16(self): | ||
torch.cuda.reset_peak_memory_stats() | ||
model_id = "BAAI/AltDiffusion" | ||
pipe = AltDiffusionPipeline.from_pretrained( | ||
model_id, revision="fp16", torch_dtype=torch.float16, safety_checker=None | ||
) | ||
pipe = pipe.to(torch_device) | ||
pipe.set_progress_bar_config(disable=None) | ||
|
||
prompt = "a photograph of an astronaut riding a horse" | ||
|
||
generator = torch.Generator(device=torch_device).manual_seed(0) | ||
output_chunked = pipe( | ||
[prompt], generator=generator, guidance_scale=7.5, num_inference_steps=10, output_type="numpy" | ||
) | ||
image_chunked = output_chunked.images | ||
|
||
generator = torch.Generator(device=torch_device).manual_seed(0) | ||
with torch.autocast(torch_device): | ||
output = pipe( | ||
[prompt], generator=generator, guidance_scale=7.5, num_inference_steps=10, output_type="numpy" | ||
) | ||
image = output.images | ||
|
||
# Make sure results are close enough | ||
diff = np.abs(image_chunked.flatten() - image.flatten()) | ||
# They ARE different since ops are not run always at the same precision | ||
# however, they should be extremely close. | ||
assert diff.mean() < 2e-2 |
Oops, something went wrong.