Skip to content

Creat your own dataset with the similar format with CIFAR10 in python version.

Notifications You must be signed in to change notification settings

VisanXJ/cifar10Dataset

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

11 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

cifar10Dataset

Creat your own dataset with the similar format with CIFAR10 in python version.

之前发布的仿照CIFAR10数据集格式,制作自己的数据集 (C++版本),得到一些网友的关注,并且不断有网友在评论区或者私信里询问,怎样制作python版本的。趁着下午有点闲时间,把制作方法整理发布在这里,希望对大家有所帮助。

源码地址GitHub: yhlleo/cifar10Dataset

关于python 版本的CIFAR10的数据格式,官网上已经介绍:

data -- a 10000x3072 numpy array of uint8s. Each row of the array stores a 32x32 colour image. The first 1024 entries contain the red channel values, the next 1024 the green, and the final 1024 the blue. The image is stored in row-major order, so that the first 32 entries of the array are the red channel values of the first row of the image. labels -- a list of 10000 numbers in the range 0-9. The number at index i indicates the label of the ith image in the array data.

因此,想要制作自己的数据集,只需要把data, label准备好就可以,另外,我们可以读取cifar10存储好的文件,查看其数据格式,以data_batch_1为例(可以通过cifar10_read.py读取):

{'data': array([[ 59,  43,  50, ..., 140,  84,  72],
       [154, 126, 105, ..., 139, 142, 144],
       [255, 253, 253, ...,  83,  83,  84],
       ..., 
       [ 71,  60,  74, ...,  68,  69,  68],
       [250, 254, 211, ..., 215, 255, 254],
       [ 62,  61,  60, ..., 130, 130, 131]], dtype=uint8), 
'labels': [6, 9, 9, 4, 1, 1, 2, 7, 8, 3, 4, 7, 7, 2, 9, 9, 9, 3, 2, 6, 4, 3, 6, 6, 2, 6, 3, 5, 4, 0, 0, 9, 1, 3, 4, 0, 3, 7, 3, 3, 5, 2, 2, 7, 1, 1, 1, 2, 2, 0, 9, 5, 7, 9, 2, 2, 5, 2, 4, 3, 1, 1, 8, 2, 1, 1, 4, 9, 7, 8, 5, 9, 6, 7, 3, 1, 9, 0, 3, 1, 3, 5, 4, 5, 7, 7,  ... , 9, 8, 9, 4, 4, 7, 1, 0, 4, 3, 6, 3, 9, 8, 3, 6, 8, 3, 6, 6, 2, 6, 7, 3, 0, 0, 0, 2, 5, 1, 2, 9, 2, 2, 1, 6, 3, 9, 1, 1, 5],
'batch_label': 'training batch 1 of 5', 
'filenames': ['leptodactylus_pentadactylus_s_000004.png', 'camion_s_000148.png', 'tipper_truck_s_001250.png', ... , 'truck_s_000036.png', 'car_s_002296.png', 'estate_car_s_001433.png', 'cur_s_000170.png']}

很明显,python版本存储成了一个dict,其中key包括:

  • data, 存放图像数据文件,是一个nx3072的数组;
  • labels, 存放图像对应的label,是一个nx1的数组;
  • batch_label, 说明信息;
  • filenames, 文件名列表。

详细的代码内容,可以查看实现代码,另外demo.py中提供了测试数据,这里把读取的文件结果输出:

{'data': array([[255, 255, 255, ..., 255, 255, 255],
       [255, 255, 255, ..., 255, 255, 255]], dtype=uint8), 
'label': [0, 1], 
'batch_label': 'training batch 0 of 1', 
'filenames': ['a.png', 'b.png']}

跟官方数据的输出格式一致,虽然没有训练测试,但是理论上应该没问题,大家在测试的过程中,如果遇到问题,欢迎指出。

About

Creat your own dataset with the similar format with CIFAR10 in python version.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%