-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
2 changed files
with
397 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,348 @@ | ||
|
||
import os | ||
import numpy as np | ||
from math import sqrt | ||
import torch | ||
from data.piplines import LoadImageFromFile, LoadAnnotations, Normalize, DefaultFormatBundle, \ | ||
Collect, TestCollect, Resize, Pad, RandomFlip, MultiScaleFlipAug, ImageToTensor | ||
|
||
|
||
|
||
process_funcs_dict = {'LoadImageFromFile': LoadImageFromFile, | ||
'LoadAnnotations': LoadAnnotations, | ||
'Normalize': Normalize, | ||
'DefaultFormatBundle': DefaultFormatBundle, | ||
'Collect': Collect, | ||
'TestCollect': TestCollect, | ||
'Resize': Resize, | ||
'Pad': Pad, | ||
'RandomFlip': RandomFlip, | ||
'MultiScaleFlipAug': MultiScaleFlipAug, | ||
'ImageToTensor': ImageToTensor} | ||
|
||
COLORS = ((244, 67, 54), | ||
(233, 30, 99), | ||
(156, 39, 176), | ||
(103, 58, 183), | ||
( 63, 81, 181), | ||
( 33, 150, 243), | ||
( 3, 169, 244), | ||
( 0, 188, 212), | ||
( 0, 150, 136), | ||
( 76, 175, 80), | ||
(139, 195, 74), | ||
(205, 220, 57), | ||
(255, 235, 59), | ||
(255, 193, 7), | ||
(255, 152, 0), | ||
(255, 87, 34), | ||
(121, 85, 72), | ||
(158, 158, 158), | ||
( 96, 125, 139)) | ||
|
||
# These are in RGB and are for ImageNet | ||
MEANS = (123.675, 116.28, 123.675) | ||
STD = (58.395, 57.12, 58.395) | ||
|
||
|
||
COCO_CLASSES = ('person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', | ||
'train', 'truck', 'boat', 'traffic light', 'fire hydrant', | ||
'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', | ||
'horse', 'sheep', 'cow', 'elephant', 'bear', 'zebra', 'giraffe', | ||
'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee', | ||
'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', | ||
'baseball glove', 'skateboard', 'surfboard', 'tennis racket', | ||
'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', | ||
'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot', | ||
'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch', | ||
'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', | ||
'mouse', 'remote', 'keyboard', 'cell phone', 'microwave', 'oven', | ||
'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', | ||
'scissors', 'teddy bear', 'hair drier', 'toothbrush') | ||
|
||
COCO_LABEL_MAP = { 1: 1, 2: 2, 3: 3, 4: 4, 5: 5, 6: 6, 7: 7, 8: 8, | ||
9: 9, 10: 10, 11: 11, 13: 12, 14: 13, 15: 14, 16: 15, 17: 16, | ||
18: 17, 19: 18, 20: 19, 21: 20, 22: 21, 23: 22, 24: 23, 25: 24, | ||
27: 25, 28: 26, 31: 27, 32: 28, 33: 29, 34: 30, 35: 31, 36: 32, | ||
37: 33, 38: 34, 39: 35, 40: 36, 41: 37, 42: 38, 43: 39, 44: 40, | ||
46: 41, 47: 42, 48: 43, 49: 44, 50: 45, 51: 46, 52: 47, 53: 48, | ||
54: 49, 55: 50, 56: 51, 57: 52, 58: 53, 59: 54, 60: 55, 61: 56, | ||
62: 57, 63: 58, 64: 59, 65: 60, 67: 61, 70: 62, 72: 63, 73: 64, | ||
74: 65, 75: 66, 76: 67, 77: 68, 78: 69, 79: 70, 80: 71, 81: 72, | ||
82: 73, 84: 74, 85: 75, 86: 76, 87: 77, 88: 78, 89: 79, 90: 80} | ||
|
||
|
||
Tomato_CLASSES = ( "yuan_bad" ,"yuan_good" ,"yuan_best", | ||
"kezhai_bad" ,"kezhai_good" ,"kezhai_best", | ||
"zhedang_bad" ,"zhedang_good" ,"zhedang_best", | ||
"yuan_bad" ,"yuan_good" ,"yuan_best", | ||
"kezhai_bad" ,"kezhai_good" ,"kezhai_best", | ||
"zhedang_bad" ,"zhedang_good" ,"zhedang_best", | ||
"yuan_bad" ,"yuan_good" ,"yuan_best", | ||
"kezhai_bad" ,"kezhai_good" ,"kezhai_best" ,"kezhai_kailie", | ||
"zhedang_bad" ,"zhedang_good" ,"zhedang_best") | ||
|
||
# Tomato_CLASSES = ( "50_yuan_bad" ,"50_yuan_good" ,"50_yuan_best", | ||
# "50_kezhai_bad" ,"50_kezhai_good" ,"50_kezhai_best", | ||
# "50_zhedang_bad" ,"50_zhedang_good" ,"50_zhedang_best", | ||
# "70_yuan_bad" ,"70_yuan_good" ,"70_yuan_best", | ||
# "70_kezhai_bad" ,"70_kezhai_good" ,"70_kezhai_best", | ||
# "70_zhedang_bad" ,"70_zhedang_good" ,"70_zhedang_best", | ||
# "90_yuan_bad" ,"90_yuan_good" ,"90_yuan_best", | ||
# "90_kezhai_bad" ,"90_kezhai_good" ,"90_kezhai_best" ,"90_kezhai_kailie", | ||
# "90_zhedang_bad" ,"90_zhedang_good" ,"90_zhedang_best") | ||
|
||
Tomato_LABEL_MAP = { 1: 1 , 2: 2 , 3: 3 , 4: 4 , 5: 5 , 6: 6 , 7: 7, | ||
8: 8 , 9: 9 , 10: 10, 11: 11, 12: 12, 13: 13, 14: 14, | ||
15: 15, 16: 16, 17: 17, 18: 18, 19: 19, 20: 20, 21: 21, | ||
22: 22, 23: 23, 24: 24, 25: 25, 26: 26, 27: 27, 28: 28} | ||
|
||
|
||
class Config(object): | ||
""" | ||
After implement this class, you can call 'cfg.x' instead of 'cfg['x']' to get a certain parameter. | ||
""" | ||
def __init__(self, config_dict): | ||
for key, val in config_dict.items(): | ||
self.__setattr__(key, val) | ||
|
||
def copy(self, new_config_dict={}): | ||
""" | ||
Copies this config into a new config object, making the changes given by new_config_dict. | ||
""" | ||
ret = Config(vars(self)) | ||
for key, val in new_config_dict.items(): | ||
ret.__setattr__(key, val) | ||
|
||
return ret | ||
|
||
def replace(self, new_config_dict): | ||
""" | ||
Copies new_config_dict into this config object. Note: new_config_dict can also be a config object. | ||
""" | ||
if isinstance(new_config_dict, Config): | ||
new_config_dict = vars(new_config_dict) | ||
|
||
for key, val in new_config_dict.items(): | ||
self.__setattr__(key, val) | ||
|
||
def __repr__(self): | ||
return self.name | ||
|
||
def print(self): | ||
for k, v in vars(self).items(): | ||
print(k, ' = ', v) | ||
|
||
|
||
dataset_base = Config({ | ||
'name': 'Base Dataset', | ||
|
||
# Training images and annotations | ||
'train_images': './data/coco/images/', | ||
'train_info' : 'path_to_annotation_file', | ||
|
||
# Validation images and annotations. | ||
'valid_images': './data/coco/images/', | ||
'valid_info' : 'path_to_annotation_file', | ||
|
||
# Whether or not to load GT. If this is False, eval.py quantitative evaluation won't work. | ||
'has_gt': False, | ||
|
||
# A list of names for each of you classes. | ||
# 'class_names': COCO_CLASSES, | ||
'class_names': Tomato_CLASSES, | ||
|
||
# COCO class ids aren't sequential, so this is a bandage fix. If your ids aren't sequential, | ||
# provide a map from category_id -> index in class_names + 1 (the +1 is there because it's 1-indexed). | ||
# If not specified, this just assumes category ids start at 1 and increase sequentially. | ||
'label_map': None | ||
}) | ||
|
||
coco2017_dataset = dataset_base.copy({ | ||
'name': 'COCO 2017', | ||
|
||
'train_prefix': 'E:/Data/COCO/coco2017/', | ||
'train_info': 'annotations/instances_train2017.json', | ||
'trainimg_prefix': 'train2017/', | ||
'train_images': 'E:/Data/COCO/coco2017/', | ||
|
||
'valid_prefix': 'E:/Data/COCO/coco2017/', | ||
'valid_info': 'annotations/instances_val2017.json', | ||
'validimg_prefix': 'val2017/', | ||
'valid_images': 'E:/Data/COCO/coco2017/', | ||
|
||
'label_map': COCO_LABEL_MAP | ||
}) | ||
|
||
casia_SPT_val = dataset_base.copy({ | ||
'name': 'casia-SPT 2020', | ||
|
||
'train_prefix': './data/casia-SPT_val/val/', | ||
'train_info': 'val_annotation.json', | ||
'trainimg_prefix': '', | ||
'train_images': './data/casia-SPT_val/val/', | ||
|
||
|
||
'valid_prefix': './data/casia-SPT_val/val/', | ||
'valid_info': 'val_annotation.json', | ||
'validimg_prefix': '', | ||
'valid_images': './data/casia-SPT_val/val', | ||
|
||
'label_map': COCO_LABEL_MAP | ||
}) | ||
|
||
|
||
Tomato_dataset = dataset_base.copy({ | ||
'name': 'TomatoInstance', | ||
|
||
'train_prefix': 'E:/Data/TomatoInstance1/', | ||
'train_info': 'annotations.json', | ||
'trainimg_prefix': '', | ||
'train_images': 'E:/Data/TomatoInstance1/JPEGImages/', | ||
|
||
# 'valid_prefix': 'E:/Data/COCO/coco2017/', | ||
# 'valid_info': 'annotations/instances_val2017.json', | ||
# 'validimg_prefix': 'val2017/', | ||
# 'valid_images': 'E:/Data/COCO/coco2017/', | ||
|
||
'label_map': Tomato_LABEL_MAP | ||
}) | ||
|
||
|
||
|
||
# ----------------------- BACKBONES ----------------------- # | ||
backbone_base = Config({ | ||
'name': 'Base Backbone', | ||
'path': 'path/to/pretrained/weights', | ||
'type': None, | ||
}) | ||
|
||
resnet18_backbone = backbone_base.copy({ | ||
'name': 'resnet18', | ||
'path': './pretrained/resnet18_nofc.pth', | ||
'type': 'ResNetBackbone', | ||
'num_stages': 4, | ||
'frozen_stages': 1, | ||
'out_indices': (0, 1, 2, 3) | ||
}) | ||
|
||
resnet34_backbone = backbone_base.copy({ | ||
'name': 'resnet34', | ||
'path': './pretrained/resnet34_nofc.pth', | ||
'type': 'ResNetBackbone', | ||
'num_stages': 4, | ||
'frozen_stages': 1, | ||
'out_indices': (0, 1, 2, 3) | ||
}) | ||
|
||
# fpn config | ||
fpn_base = Config({ | ||
'in_channels': [64, 128, 256, 512], | ||
'out_channels': 256, | ||
'start_level': 0, | ||
'num_outs': 5, | ||
}) | ||
|
||
|
||
# ----------------------- CONFIG DEFAULTS ----------------------- # | ||
coco_base_config = Config({ | ||
'dataset': coco2017_dataset, | ||
'num_classes': 81, # This should include the background class | ||
}) | ||
|
||
|
||
|
||
|
||
# ----------------------- SOLO v2.0 CONFIGS ----------------------- # | ||
solov2_base_config = coco_base_config.copy({ | ||
'name': 'solov2_base', | ||
'backbone': resnet18_backbone, | ||
|
||
# Dataset stuff | ||
# 'dataset': casia_SPT_val, | ||
# 'dataset': coco2017_dataset, | ||
# 'num_classes': len(coco2017_dataset.class_names), | ||
# 'num_classes': 80, # 不需要添加背景 | ||
|
||
'dataset': Tomato_dataset, | ||
'num_classes': 28, # Tomato 28类[不用加背景] | ||
|
||
'imgs_per_gpu': 4, | ||
'workers_per_gpu': 1, | ||
'num_gpus': 1, | ||
|
||
'train_pipeline': [ | ||
dict(type='LoadImageFromFile'), # read img process | ||
dict(type='LoadAnnotations', with_bbox=True, with_mask=True), # load annotations | ||
dict(type='Resize', # 多尺度训练,随即从后面的size选择一个尺寸 | ||
# img_scale=[(768, 512), (768, 480), (768, 448), (768, 416), (768, 384), (768, 352)], | ||
img_scale=[(512, 512)], | ||
multiscale_mode='value', | ||
keep_ratio=True), | ||
dict(type='RandomFlip', flip_ratio=0.5), # 随机反转,0.5的概率 | ||
dict(type='Normalize', mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True), # normallize | ||
dict(type='Pad', size_divisor=32), # pad另一边的size为32的倍数,solov2对网络输入的尺寸有要求,图像的size需要为32的倍数 | ||
dict(type='DefaultFormatBundle'), # 将数据转换为tensor,为后续网络计算 | ||
dict(type='Collect' ,keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks'], | ||
meta_keys=('filename', 'ori_shape', 'img_shape', 'pad_shape', | ||
'scale_factor', 'flip', 'img_norm_cfg')), | ||
], | ||
|
||
# learning policy | ||
'lr_config': dict(policy='step', warmup='linear', warmup_iters=500, warmup_ratio=0.01, step=[20, 35]), | ||
|
||
# optimizer | ||
'optimizer': dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001), | ||
|
||
'optimizer_config': dict(grad_clip=dict(max_norm=35, norm_type=2)), # 梯度平衡策略 | ||
|
||
# 'resume_from': "weights/solov2_resnet18_epoch_25.pth", # 从保存的权重文件中读取,如果为None则权重自己初始化 | ||
'resume_from': None, | ||
|
||
'epoch_iters_start': 1, # 本次训练的开始迭代起始轮数 | ||
'total_epoch': 50, | ||
|
||
'test_pipeline': [ | ||
dict(type='LoadImageFromFile'), | ||
dict( | ||
type='MultiScaleFlipAug', | ||
img_scale=(512, 512), | ||
flip=False, | ||
transforms=[ | ||
dict(type='Resize', keep_ratio=True), | ||
dict(type='RandomFlip'), | ||
dict(type='Normalize', mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True), | ||
dict(type='Pad', size_divisor=32), | ||
dict(type='ImageToTensor', keys=['img']), | ||
dict(type='Collect', keys=['img']), | ||
]) | ||
], | ||
|
||
'test_cfg': dict( | ||
nms_pre=500, | ||
score_thr=0.80, | ||
mask_thr=0.75, | ||
update_thr=0.05, | ||
kernel='gaussian', # gaussian/linear | ||
sigma=2.0, | ||
max_per_img=30) | ||
|
||
}) | ||
|
||
cfg = solov2_base_config.copy() | ||
|
||
|
||
def set_cfg(config_name :str): | ||
""" Sets the active config. Works even if cfg is already imported! """ | ||
global cfg | ||
|
||
# Note this is not just an eval because I'm lazy, but also because it can | ||
# be used like ssd300_config.copy({'max_size': 400}) for extreme fine-tuning | ||
cfg.replace(eval(config_name)) | ||
|
||
if cfg.name is None: | ||
cfg.name = config_name.split('_config')[0] | ||
|
||
def set_dataset(dataset_name :str): | ||
""" Sets the dataset of the current config. """ | ||
cfg.dataset = eval(dataset_name) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,49 @@ | ||
""" | ||
Runs the coco-supplied cocoeval script to evaluate detections | ||
outputted by using the output_coco_json flag in eval.py. | ||
""" | ||
|
||
|
||
import argparse | ||
|
||
from pycocotools.coco import COCO | ||
from pycocotools.cocoeval import COCOeval | ||
|
||
|
||
parser = argparse.ArgumentParser(description='COCO Detections Evaluator') | ||
parser.add_argument('--bbox_det_file', default='E:/Data/COCOInstance3/mask_detections.json', type=str) | ||
parser.add_argument('--mask_det_file', default='E:/Pytorch_solov2/eval_masks.json', type=str) | ||
parser.add_argument('--gt_ann_file', default='E:/Data/TomatoInstance1/annotations.json', type=str) | ||
parser.add_argument('--eval_type', default='mask', choices=['bbox', 'mask', 'both'], type=str) | ||
args = parser.parse_args() | ||
|
||
|
||
|
||
if __name__ == '__main__': | ||
|
||
eval_bbox = (args.eval_type in ('bbox', 'both')) | ||
eval_mask = (args.eval_type in ('mask', 'both')) | ||
|
||
print('Loading annotations...') | ||
gt_annotations = COCO(args.gt_ann_file) | ||
if eval_bbox: | ||
bbox_dets = gt_annotations.loadRes(args.bbox_det_file) | ||
if eval_mask: | ||
mask_dets = gt_annotations.loadRes(args.mask_det_file) | ||
|
||
if eval_bbox: | ||
print('\nEvaluating BBoxes:') | ||
bbox_eval = COCOeval(gt_annotations, bbox_dets, 'bbox') | ||
bbox_eval.evaluate() | ||
bbox_eval.accumulate() | ||
bbox_eval.summarize() | ||
|
||
if eval_mask: | ||
print('\nEvaluating Masks:') | ||
bbox_eval = COCOeval(gt_annotations, mask_dets, 'segm') | ||
bbox_eval.evaluate() | ||
bbox_eval.accumulate() | ||
bbox_eval.summarize() | ||
|
||
|
||
|