Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Update CLI and others in reamde #100

Merged
merged 9 commits into from
Dec 10, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Binary file added .github/boxplot.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
11 changes: 6 additions & 5 deletions DATASET_GUIDE.md
Original file line number Diff line number Diff line change
Expand Up @@ -37,10 +37,9 @@ This document provides a detailed overview of the datasets used in this reposito
task=segmentation
```

### PASTIS
### PASTIS-R

- The code supports automatic downloading of the dataset into `./data` folder.
- SPOT-6 images are available for single-temporal semantic segmentation, otherwise the basic experimental setup for this dataset is a multi-temporal multi-modal semantic segmentation task.
- Images are 128x128 patches, so a resize is needed to match input_size requirements of the encoders.
- For models that don't support multi-temporal data, each time frame is processed separately for feature extraction and then mapped into a single representation. This setup requires the configuration file `configs/decoder/seg_upernet_mt_ltae.yaml`. Additionally, in the dataset configuration, specify the number of time frames, for example, `multi_temporal: 6`. Below is a CLI example for running the experiment using the RemoteCLIP pretrained encoder and multi-temporal UPerNet with L-TAE processing of temporal information:

Expand All @@ -52,6 +51,7 @@ This document provides a detailed overview of the datasets used in this reposito
decoder=seg_upernet_mt_ltae \
preprocessing=seg_resize \
criterion=cross_entropy \
task.evaluator.inference_mode=whole \
task=segmentation
```

Expand Down Expand Up @@ -142,7 +142,8 @@ This document provides a detailed overview of the datasets used in this reposito
decoder=seg_upernet_mt_ltae \
preprocessing=seg_resize \
criterion=cross_entropy \
task=segmentation
task=segmentation \
task.evaluator.inference_mode=whole
```

### SpaceNet 7
Expand All @@ -159,7 +160,7 @@ This document provides a detailed overview of the datasets used in this reposito
encoder=remoteclip \
decoder=seg_upernet\
preprocessing=seg_default \
criterion=cross_entropy \
criterion=dice \
task=segmentation
```
- Here is an example to run change detection:
Expand All @@ -170,7 +171,7 @@ This document provides a detailed overview of the datasets used in this reposito
encoder=remoteclip \
decoder=seg_siamupernet_conc\
preprocessing=seg_default \
criterion=cross_entropy \
criterion=dice \
task=change_detection
```

Expand Down
71 changes: 42 additions & 29 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -2,6 +2,8 @@

# PANGAEA: A Global and Inclusive Benchmark for Geospatial Foundation Models

🔥 The [pre-print](https://arxiv.org/abs/2412.04204) is out!

## 📚 Introduction

While geospatial foundation models (GFMs) have proliferated rapidly, their evaluations remain inconsistent and narrow. Existing works often utilize suboptimal downstream datasets (e.g., EuroSAT) and tasks (e.g., land cover classification), which constrain comparability and real-world usability. Additionally, a lack of diversity in evaluation protocols, including image resolution and sensor types, further complicates the extensive assessments of GFM performance.
Expand Down Expand Up @@ -35,12 +37,12 @@ And the following **datasets**:
|:-------------------:|:--------:|:------:|:----:|:-------:|:--------:|
| [HLS Burn Scars](https://huggingface.co/datasets/ibm-nasa-geospatial/hls_burn_scars) | [link](https://huggingface.co/datasets/ibm-nasa-geospatial/hls_burn_scars) | Wildfire | Semantic Segmentation | HLS (Harmonized Landsat Sentinel-2) | USA |
| [MADOS](https://www.sciencedirect.com/science/article/pii/S0924271624000625) | [link](https://marine-pollution.github.io/index.html) | Marine | Semantic Segmentation | S2 | Global |
| [PASTIS-HD](https://arxiv.org/abs/2404.08351) | [link](https://huggingface.co/datasets/IGNF/PASTIS-HD) | Agriculture | Semantic Segmentation | S1, S2, SPOT-6 | France |
| [PASTIS-R](https://arxiv.org/abs/2404.08351) | [link](https://huggingface.co/datasets/IGNF/PASTIS-HD) | Agriculture | Semantic Segmentation | S1, S2, SPOT-6 | France |
| [Sen1Floods11](http://openaccess.thecvf.com/content_CVPRW_2020/html/w11/Bonafilia_Sen1Floods11_A_Georeferenced_Dataset_to_Train_and_Test_Deep_Learning_CVPRW_2020_paper.html) | [link](https://github.com/cloudtostreet/Sen1Floods11) | Flood |Semantic Segmentation | S1, S2 | Global |
| [xView2](https://openaccess.thecvf.com/content_CVPRW_2019/html/cv4gc/Gupta_Creating_xBD_A_Dataset_for_Assessing_Building_Damage_from_Satellite_CVPRW_2019_paper.html) | [link](https://xview2.org/dataset) | HADR | Change Detection | Maxar | Global |
| [Five Billion Pixels](https://www.sciencedirect.com/science/article/pii/S0924271622003264) | [original version](https://x-ytong.github.io/project/Five-Billion-Pixels.html) <br> (custom version coming soon) | (Urban) Land Cover | Semantic Segmentation | Gaofen-2 | China |
| [DynamicEarthNet](https://arxiv.org/pdf/2203.12560) | [link](https://mediatum.ub.tum.de/1650201) | (Urban) Land Cover | Semantic Segmentation | PlanetFusion | Global |
| [CropTypeMapping](https://openaccess.thecvf.com/content_CVPRW_2019/papers/cv4gc/Rustowicz_Semantic_Segmentation_of_Crop_Type_in_Africa_A_Novel_Dataset_CVPRW_2019_paper.pdf) | [link](https://sustainlab-group.github.io/sustainbench/docs/datasets/sdg2/crop_type_mapping_ghana-ss.html#download) | Agriculture |Semantic Segmentation |S1, S2, Planet|South Sudan|
| [CropTypeMapping-South Sudan](https://openaccess.thecvf.com/content_CVPRW_2019/papers/cv4gc/Rustowicz_Semantic_Segmentation_of_Crop_Type_in_Africa_A_Novel_Dataset_CVPRW_2019_paper.pdf) | [link](https://sustainlab-group.github.io/sustainbench/docs/datasets/sdg2/crop_type_mapping_ghana-ss.html#download) | Agriculture |Semantic Segmentation |S1, S2, Planet|South Sudan|
| [SpaceNet 7](https://openaccess.thecvf.com/content/CVPR2021/papers/Van_Etten_The_Multi-Temporal_Urban_Development_SpaceNet_Dataset_CVPR_2021_paper.pdf) | [link](https://spacenet.ai/sn7-challenge/) | Urban | Change detection/ <br> Semantic Segmentation | Planet | Global |
| [AI4SmallFarms](https://ieeexplore.ieee.org/document/10278130) | [link](https://doi.org/10.17026/dans-xy6-ngg6) | Agriculture | Semantic segmentation | S2 | Cambodia/Vietnam |
| [BioMassters](https://papers.nips.cc/paper_files/paper/2023/file/40daf2a00278c4bea1b26cd4c8a654f8-Paper-Datasets_and_Benchmarks.pdf) | [link](https://huggingface.co/datasets/nascetti-a/BioMassters) | Forest | Regression | S1, S2 | Finland |
Expand All @@ -52,7 +54,7 @@ The repository supports the following **tasks** using geospatial (foundation) mo
- [Single Temporal Regression](#single-temporal-regression)
- [Multi-Temporal Regression](#multi-temporal-regression)

It is also possible to train some [supervised baselines](#-fully-supervised-baseline), based on UNet.
It is also possible to train some [supervised baselines](#-fully-supervised-baseline), based on UNet and ViT.

## 🗺️ Datasets details
Please refer to [**Dataset Guide**](DATASET_GUIDE.md) to understand the processing requirements and commands specific to each dataset.
Expand All @@ -62,7 +64,7 @@ If you want to fast-prototype your model, maybe you want to run fast experiments
## 🛠️ Setup
Clone the repository:
```
git clone https://github.com/yurujaja/pangaea-bench.git
git clone https://github.com/VMarsocci/pangaea-bench.git
cd pangaea-bench
```

Expand Down Expand Up @@ -175,7 +177,7 @@ torchrun --nnodes=1 --nproc_per_node=1 pangaea/run.py \
--config-name=train \
dataset=croptypemapping \
encoder=satlasnet_mi \
decoder=seg_upernet_mt_ltae decoder.multi_temporal_strategy=null \
decoder=seg_upernet_mt_ltae \
preprocessing=seg_resize \
criterion=cross_entropy \
task=segmentation
Expand Down Expand Up @@ -258,8 +260,8 @@ torchrun --nnodes=1 --nproc_per_node=1 pangaea/run.py \

### 💻 Fully Supervised Baseline

The repo supports also training fully supervised baselines (e.g. UNet). To run these, follow the same command line rules as for other models. Keep in mind that setting finetune=True is necessary since this fully supervised approach trains the model from scratch.
An example for single temporal semantic segmentation is provided (Sen1Floods11 dataset):
The repo supports also training fully supervised baselines (i.e. UNet and ViT). To run these, follow the same command line rules as for other models. Keep in mind that setting finetune=True is necessary since this fully supervised approach trains the model from scratch.
An example for single temporal semantic segmentation with UNet is provided (Sen1Floods11 dataset):
```
torchrun --nnodes=1 --nproc_per_node=1 pangaea/run.py \
--config-name=train \
Expand All @@ -271,7 +273,21 @@ torchrun --nnodes=1 --nproc_per_node=1 pangaea/run.py \
task=segmentation \
finetune=True
```
For the moment, there is no multi-temporal baseline supported.
There is no multi-temporal UNet supported.

An example for multi-temporal semantic segmentation with ViT is provided (CropTypeMapping-SS dataset):
```
torchrun --nnodes=1 --nproc_per_node=1 pangaea/run.py \
--config-name=train \
dataset=croptypemapping \
encoder=vit_scratch \
decoder=seg_upernet_mt_ltae \
preprocessing=seg_default \
criterion=cross_entropy \
task=segmentation \
task.evaluator.inference_mode=whole \
finetune=true
```

## 🔧 Customization

Expand All @@ -296,36 +312,33 @@ torchrun pangaea/run.py --config-name=test ckpt_dir=path_to_ckpt_dir
## ✏️ Contributing
We appreciate all contributions. Please refer to [Contributing Guidelines](.github/CONTRIBUTING.md).

## ⚠️ Warnings

Some features are under construction:
- the automatic download is working for all the datasets and models' weights but, respectively, **Five Billion Pixels**, **BioMassters**, and **GFM**.
## ⚠️ TO DO

- host all weights/datasets/subsets on HF (the automatic download is working for all the datasets and models' weights but, respectively, **Five Billion Pixels**, **BioMassters**, and **GFM**. The GFM pretrained model can be downloaded from [OneDrive](https://onedrive.live.com/?authkey=%21AIx%5FHoX7JG4Ai18&id=93B3D3BDA9EFE744%21100937&cid=93B3D3BDA9EFE744).)
- add hyperparameters search ([Optuna](https://optuna.org/))
- support automatic running of all the experiments
- create an Arena to fast benchmark all the GFMs

## 🧮 Some first results
## 🧮 Some results

A pre-print is coming soon... Stay tuned!
<img src=".github/boxplot.png" alt="results" width="60%">

| Encoder | Dataset | Epochs | mIoU |
|---------|---------------|--------|--------|
| Prithvi | MADOS | 80 | 53.455 |
| Prithvi | HLSBurnScars | 80 | 86.208 |
| Prithvi | Sen1Floods11 | 80 | 87.217 |
| Prithvi | AI4SmallFarms | 80 | 33.796 |
Check the paper for all the insights!

NOTE: if you want to benchmark the results of your model, for a fair comparison do not change the hparams in the configs! When the pre-print will be out, we will publish also a set of "benchmark-configs".
NOTE: if you want to benchmark the results of your model, for a fair comparison do not change the hparams in the configs! Soon we will publish also a set of "benchmark-configs", to support automatic running.

## 📝 Citation

If you use this software in your work, please cite:
If you find this work useful, please cite:

```
@misc{pangaea,
author = {Pangaea Team},
title = {Pangaea},
year = {2024},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {\url{https://github.com/yurujaja/pangaea-bench}},
@misc{marsocci2024pangaeaglobalinclusivebenchmark,
title={PANGAEA: A Global and Inclusive Benchmark for Geospatial Foundation Models},
author={Valerio Marsocci and Yuru Jia and Georges Le Bellier and David Kerekes and Liang Zeng and Sebastian Hafner and Sebastian Gerard and Eric Brune and Ritu Yadav and Ali Shibli and Heng Fang and Yifang Ban and Maarten Vergauwen and Nicolas Audebert and Andrea Nascetti},
year={2024},
eprint={2412.04204},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2412.04204},
}
```
2 changes: 2 additions & 0 deletions pangaea/decoders/upernet.py
Original file line number Diff line number Diff line change
@@ -1,3 +1,5 @@
# Adapted from https://github.com/open-mmlab/mmsegmentation/blob/main/mmseg/models/decode_heads/uper_head.py

import torch
import torch.nn as nn
import torch.nn.functional as F
Expand Down
Loading