Skip to content

Commit

Permalink
Update README.md
Browse files Browse the repository at this point in the history
  • Loading branch information
VMarsocci authored Sep 24, 2024
1 parent 7f8f763 commit a5aa002
Showing 1 changed file with 7 additions and 7 deletions.
14 changes: 7 additions & 7 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -15,7 +15,7 @@ For the moment, we support the following **models**:
| [SSL4EOS12](https://arxiv.org/abs/2211.07044) | SSL4EO-S12: A Large-Scale Multi-Modal, Multi-Temporal <br> Dataset for Self-Supervised Learning in Earth Observation | [link](https://github.com/zhu-xlab/SSL4EO-S12) | DINO, MAE, DATA2VEC, MOCO|
| [Scale-MAE](https://arxiv.org/pdf/2212.14532) | Scale-MAE: Scalable Masked Autoencoders for Self-Supervised Learning on Climate Datasets | [link](https://github.com/bair-climate-initiative/scale-mae) | Masked Autoencoders, Multiscale|
| [SatlasNet](https://arxiv.org/pdf/2211.15660) | SatlasNet: A Spatio-Temporal Atlas for Global Mapping from Satellite Images | [link](https://github.com/allenai/satlas/tree/main) | Supervised, Multi-temporal |
| [GFM](https://arxiv.org/pdf/2404.01260) | GFM: Generalized Foundation Models for Climate Science | [link](https://github.com/mmendiet/GFM) | |
| [GFM](https://arxiv.org/pdf/2302.04476) | GFM: Generalized Foundation Models for Climate Science | [link](https://github.com/mmendiet/GFM) | Swin, Continual Pre-training |
| [SpectralGPT](https://arxiv.org/abs/2311.07113) | SpectralGPT: Generative Pretrained Transformer for Hyperspectral Image Analysis | [link](https://github.com/danfenghong/IEEE_TPAMI_SpectralGPT) | MAE, Multi-spectral |
| [DOFA](https://arxiv.org/pdf/2403.15356) | DOFA: Dynamic Object Feature Aggregation for Self-Supervised Learning in Satellite Data | [link](https://github.com/zhu-xlab/DOFA) | MAE, Dynamic bands |
| [CROMA](https://arxiv.org/pdf/2311.00566) | CROMA: Cross-Modal Alignment for Satellite Image Analysis | [link](https://github.com/antofuller/CROMA) | Contrastive Learning, MAE |
Expand All @@ -27,13 +27,13 @@ And the following **datasets**:

| | Download | Domain | Task | Sensors | Location |
|:-------------------:|:--------:|:------:|:----:|:-------:|:--------:|
| [HLS Burn Scars](https://huggingface.co/datasets/ibm-nasa-geospatial/hls_burn_scars) | [link](https://huggingface.co/datasets/ibm-nasa-geospatial/hls_burn_scars) | Wildfire | Semantic Segmentation | HLS (Harmonized Landsat Sentinel-2) | Global |
| MADOS | | | | | Global |
| PASTIS | | | | | France |
| [HLS Burn Scars](https://huggingface.co/datasets/ibm-nasa-geospatial/hls_burn_scars) | [link](https://huggingface.co/datasets/ibm-nasa-geospatial/hls_burn_scars) | Wildfire | Semantic Segmentation | HLS (Harmonized Landsat Sentinel-2) | USA |
| [MADOS](https://www.sciencedirect.com/science/article/pii/S0924271624000625) | [link](https://marine-pollution.github.io/index.html) | Marine | Semantic Segmentation | S2 | Global |
| [PASTIS](https://arxiv.org/pdf/2112.07558v1) | [link](https://github.com/VSainteuf/pastis-benchmark) | Agriculture | Semantic Segmentation | S1, S2, SPOT-6 | France |
| [Sen1Floods11](http://openaccess.thecvf.com/content_CVPRW_2020/html/w11/Bonafilia_Sen1Floods11_A_Georeferenced_Dataset_to_Train_and_Test_Deep_Learning_CVPRW_2020_paper.html) | [link](https://github.com/cloudtostreet/Sen1Floods11) | Flood |Semantic Segmentation | S1, S2 | Global |
| [xView2](https://openaccess.thecvf.com/content_CVPRW_2019/html/cv4gc/Gupta_Creating_xBD_A_Dataset_for_Assessing_Building_Damage_from_Satellite_CVPRW_2019_paper.html) | [link](https://xview2.org/dataset) | HADR | Semantic Segmentation | Maxar | Global |
| Five Billion Pixels | | | | | China |
| DynamicEarthNet | | | | | Global |
| [Five Billion Pixels](https://www.sciencedirect.com/science/article/pii/S0924271622003264) | [original version](https://x-ytong.github.io/project/Five-Billion-Pixels.html) (custom version coming soon) | (Urban) Land Cover | Semantic Segmentation | Gaofen-2 | China |
| [DynamicEarthNet](https://arxiv.org/pdf/2203.12560) | [link](https://mediatum.ub.tum.de/1650201) | (Urban) Land Cover | Semantic Segmentation | PlanetFusion | Global |
| [CropTypeMapping](https://openaccess.thecvf.com/content_CVPRW_2019/papers/cv4gc/Rustowicz_Semantic_Segmentation_of_Crop_Type_in_Africa_A_Novel_Dataset_CVPRW_2019_paper.pdf) | [link](https://sustainlab-group.github.io/sustainbench/docs/datasets/sdg2/crop_type_mapping_ghana-ss.html#download) | Agriculture |Semantic Segmentation |S1, S2, Planet|South Sudan|
| [SpaceNet 7](https://openaccess.thecvf.com/content/CVPR2021/papers/Van_Etten_The_Multi-Temporal_Urban_Development_SpaceNet_Dataset_CVPR_2021_paper.pdf) | [link](https://spacenet.ai/sn7-challenge/) | Urban | Change detection | Planet | Global |
| [AI4SmallFarms](https://ieeexplore.ieee.org/document/10278130) | [link](https://doi.org/10.17026/dans-xy6-ngg6) | Agriculture | Semantic segmentation | S2 | Cambodia/Vietnam |
Expand All @@ -49,7 +49,7 @@ The repository supports the following **tasks** using GFMs:
- [single temporal regression](#single-temporal-regression)
- [multi-temporal regression](#multi-temporal-regression)

It is possible also to train some [supervised baselines](#-fully-supervised-training), based on UNet.
It is also possible to train some [supervised baselines](#-fully-supervised-training), based on UNet.

## 🛠️ Setup
Clone the repository:
Expand Down

0 comments on commit a5aa002

Please sign in to comment.