-
Notifications
You must be signed in to change notification settings - Fork 14
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
9b14172
commit 4d3c736
Showing
2 changed files
with
137 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,25 @@ | ||
_target_: pangaea.encoders.vit_encoder.VIT_Encoder | ||
encoder_weights: ./pretrained_models/jx_vit_base_p16_224-80ecf9dd.pt | ||
download_url: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_p16_224-80ecf9dd.pth | ||
|
||
embed_dim: 768 | ||
input_size: 224 | ||
patch_size: 16 | ||
depth: 12 | ||
num_heads: 12 | ||
mlp_ratio: 4 | ||
|
||
input_bands: | ||
optical: | ||
- B4 | ||
- B3 | ||
- B2 | ||
|
||
|
||
output_layers: | ||
- 3 | ||
- 5 | ||
- 7 | ||
- 11 | ||
|
||
output_dim: 768 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,112 @@ | ||
# Copyright (c) Meta Platforms, Inc. and affiliates. | ||
# All rights reserved. | ||
|
||
# This source code is licensed under the license found in the | ||
# LICENSE file in the root directory of this source tree. | ||
# -------------------------------------------------------- | ||
# References: | ||
# timm: https://github.com/rwightman/pytorch-image-models/tree/master/timm | ||
# DeiT: https://github.com/facebookresearch/deit | ||
# -------------------------------------------------------- | ||
|
||
from functools import partial | ||
from logging import Logger | ||
|
||
import torch | ||
import torch.nn as nn | ||
|
||
import timm.models.vision_transformer | ||
from timm.models.vision_transformer import PatchEmbed, Block | ||
from .base import Encoder | ||
|
||
|
||
class VIT_Encoder(Encoder): | ||
""" Vision Transformer with support for global average pooling | ||
""" | ||
|
||
def __init__(self, | ||
encoder_weights, | ||
input_size, | ||
input_bands, | ||
embed_dim, | ||
output_layers, | ||
output_dim, | ||
download_url, | ||
patch_size=16, | ||
depth=12, | ||
num_heads=12, | ||
mlp_ratio=4, | ||
qkv_bias=True, | ||
norm_layer=partial(nn.LayerNorm, eps=1e-6)): | ||
|
||
Encoder.__init__(self, | ||
model_name="vit_encoder", | ||
encoder_weights=encoder_weights, | ||
input_bands=input_bands, | ||
input_size=input_size, | ||
embed_dim=embed_dim, | ||
output_layers=output_layers, | ||
output_dim=output_dim, | ||
multi_temporal=False, | ||
multi_temporal_output=False, | ||
pyramid_output=False, | ||
download_url=download_url | ||
) | ||
|
||
self.patch_size = patch_size | ||
self.patch_embed = PatchEmbed(input_size, patch_size, in_chans=3, embed_dim=embed_dim) | ||
num_patches = self.patch_embed.num_patches | ||
|
||
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) | ||
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim), requires_grad=False) # fixed sin-cos embedding | ||
|
||
self.blocks = nn.ModuleList([ | ||
Block(embed_dim, num_heads, mlp_ratio, qkv_bias=qkv_bias, norm_layer=norm_layer) | ||
for i in range(depth)]) | ||
self.norm = norm_layer(embed_dim) | ||
|
||
|
||
def forward(self, images): | ||
x = images["optical"].squeeze(2) | ||
x = self.patch_embed(x) | ||
|
||
cls_tokens = self.cls_token.expand(x.shape[0], -1, -1) # stole cls_tokens impl from Phil Wang, thanks | ||
x = torch.cat((cls_tokens, x), dim=1) | ||
x = x + self.pos_embed | ||
|
||
output = [] | ||
for i, blk in enumerate(self.blocks): | ||
x = blk(x) | ||
if i == len(self.blocks) - 1: | ||
x = self.norm(x) | ||
|
||
if i in self.output_layers: | ||
out = x[:, 1:] | ||
out = out.transpose(1, 2).view( | ||
x.shape[0], | ||
-1, | ||
self.input_size // self.patch_size, | ||
self.input_size // self.patch_size, | ||
).contiguous() | ||
output.append(out) | ||
|
||
return output | ||
|
||
|
||
def load_encoder_weights(self, logger: Logger) -> None: | ||
pretrained_model = torch.load(self.encoder_weights, map_location="cpu") | ||
k = pretrained_model.keys() | ||
pretrained_encoder = {} | ||
incompatible_shape = {} | ||
missing = {} | ||
for name, param in self.named_parameters(): | ||
if name not in k: | ||
missing[name] = param.shape | ||
elif pretrained_model[name].shape != param.shape: | ||
incompatible_shape[name] = (param.shape, pretrained_model[name].shape) | ||
pretrained_model.pop(name) | ||
else: | ||
pretrained_encoder[name] = pretrained_model.pop(name) | ||
|
||
self.load_state_dict(pretrained_encoder, strict=False) | ||
self.parameters_warning(missing, incompatible_shape, logger) |