Skip to content

Commit

Permalink
Merge pull request #151 from rmatthes/followupstreamPR1829
Browse files Browse the repository at this point in the history
restores compilation after UniMath PR1829
  • Loading branch information
benediktahrens authored Jan 30, 2024
2 parents b6943b9 + bf2e3e4 commit 70ab337
Show file tree
Hide file tree
Showing 2 changed files with 6 additions and 6 deletions.
6 changes: 3 additions & 3 deletions Modules/Prelims/EpiComplements.v
Original file line number Diff line number Diff line change
Expand Up @@ -175,7 +175,7 @@ Lemma isEpi_horcomp_pw (B : category)(C D : category)
(G H : functor B C) (G' H' : functor C D)
(f : nat_trans G H) (f':nat_trans G' H')
: (∏ x, isEpi (f' x))
-> (∏ x, isEpi ((# H')%Cat (f x)))
-> (∏ x, isEpi ((# H') (f x)))
-> ∏ x, isEpi (horcomp f f' x).
Proof.
intros epif' epif.
Expand All @@ -189,7 +189,7 @@ Lemma isEpi_horcomp_pw2 (B : category)(C D : category)
(G H : functor B C) (G' H' : functor C D)
(f : nat_trans G H) (f':nat_trans G' H')
: (∏ x, isEpi (f' x))
-> (∏ x, isEpi ((# G')%Cat (f x)))
-> (∏ x, isEpi ((# G') (f x)))
-> ∏ x, isEpi (horcomp f f' x).
Proof.
intros epif epif'.
Expand All @@ -211,7 +211,7 @@ If the source category B is Set, then with the axiom of choice every epimorphism
thus absolute (i.e. any functor preserves epis).
*)
Definition preserves_Epi {B C : precategory} (F : functor B C) : UU :=
∏ a b (f : B ⟦a , b⟧), isEpi f -> isEpi (# F f)%Cat.
∏ a b (f : B ⟦a , b⟧), isEpi f -> isEpi (# F f).

(** Functor from Set preserves epimorphisms because thanks to the axiom of choice, any
set epimorphism is absolute *)
Expand Down
6 changes: 3 additions & 3 deletions Modules/Prelims/lib.v
Original file line number Diff line number Diff line change
Expand Up @@ -137,9 +137,9 @@ Qed.

(** Same as [nat_trans_comp_pointwise], but with B = A · A' *)
Definition nat_trans_comp_pointwise' :
∏ (C : precategory) (C' : category) (F G H : ([C, C' , _ ])%Cat)
(A : ([C, C' , _] ⟦ F, G ⟧)%Cat) (A' : ([C, C' , _] ⟦ G, H ⟧)%Cat) (a : C),
((A : nat_trans _ _) a · (A' : nat_trans _ _) a)%Cat = (A · A' : nat_trans _ _)%Cat a
∏ (C : precategory) (C' : category) (F G H : ([C, C' , _ ]))
(A : ([C, C' , _] ⟦ F, G ⟧)) (A' : ([C, C' , _] ⟦ G, H ⟧)) (a : C),
((A : nat_trans _ _) a · (A' : nat_trans _ _) a) = (A · A' : nat_trans _ _) a
:=
fun C C' F G H A A' => @nat_trans_comp_pointwise C C' (homset_property C') F G H A A' _ (idpath _).

Expand Down

0 comments on commit 70ab337

Please sign in to comment.