-
Notifications
You must be signed in to change notification settings - Fork 2
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
20 changed files
with
367 additions
and
235 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -7,6 +7,7 @@ __pycache__ | |
*.gif | ||
*.mp4 | ||
*.png | ||
space_results/ | ||
time_results/ | ||
2Dwave/ | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
181 changes: 84 additions & 97 deletions
181
diagnostics/alfvenwave/X/space_convergence/space_convergence_plot.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,120 +1,107 @@ | ||
import numpy as np | ||
import pandas as pd | ||
import matplotlib.pyplot as plt | ||
from matplotlib.animation import FuncAnimation | ||
import os | ||
import shutil | ||
|
||
results_dir = './space_results' | ||
|
||
nx_initial = 50 | ||
# Parameters | ||
nx = 50 | ||
ny = 3 | ||
|
||
Dt = 5e-4 | ||
quantity_name = 'By' | ||
fixed_index = 0 | ||
time_index = -1 | ||
lx = 1 | ||
|
||
studied_quantity = 'By' | ||
# Define column names | ||
column_names = ['rho', 'rhovx', 'rhovy', 'rhovz', 'Bx', 'By', 'Bz', 'Etot'] | ||
|
||
def read_file(filename): | ||
df = pd.read_csv(filename, delim_whitespace=True, header=None, names=column_names) | ||
return df | ||
|
||
# Results directory | ||
results_dir = './space_results' | ||
|
||
# Dictionary to store quantities | ||
quantities = { | ||
'rho': {}, | ||
'rhovx': {}, | ||
'rhovy': {}, | ||
'rhovz': {}, | ||
'Bx': {}, | ||
'By': {}, | ||
'Bz': {}, | ||
'Etot': {}, | ||
'rho': [], | ||
'rhovx': [], | ||
'rhovy': [], | ||
'rhovz': [], | ||
'Bx': [], | ||
'By': [], | ||
'Bz': [], | ||
'Etot': [] | ||
} | ||
n_errors = 5 | ||
|
||
times = [] | ||
errors = np.zeros(n_errors) | ||
nx_values = {} | ||
|
||
# List and sort the files in the results directory | ||
filenames = os.listdir(results_dir) | ||
filenames.sort(key=lambda x: (int(x.split('_')[0]), float(x.split('_')[2].split('.')[0].replace('_', '.')))) | ||
# Read all files in the results directory | ||
for filename in os.listdir(results_dir): | ||
if filename.startswith("0_URK2_") and filename.endswith(".txt"): | ||
# Extract time from filename and format it properly | ||
time_str = filename.split('_')[2]+'.'+filename.split('_')[3].split('.')[0] | ||
time = float(time_str) | ||
times.append(time) | ||
|
||
df = read_file(os.path.join(results_dir, filename)) | ||
|
||
for filename in filenames: | ||
stepDx_str = filename.split('_')[0] # Extract the part before "URK2_" | ||
stepDx = int(stepDx_str) | ||
|
||
# Compute nx for this stepDx | ||
nx = nx_initial * (2 ** stepDx) | ||
nx_values[stepDx] = nx | ||
|
||
# Create a new dictionary entry for this Dx if it doesn't exist | ||
if stepDx not in quantities['rho']: | ||
for key in quantities: | ||
quantities[key][stepDx] = [] | ||
|
||
# Extract time from filename and format it properly | ||
time_str = filename.split('_')[2]+'.'+filename.split('_')[3].split('.')[0] # Extract the part after "URK2_" (length of "URK2_" is 5) | ||
time_str = time_str.replace('_', '.') # Replace underscore with dot | ||
time = float(time_str) | ||
times.append(time) | ||
for quantity in quantities.keys(): | ||
quantities[quantity].append(df[quantity].values.reshape((ny, nx))) | ||
|
||
df = pd.read_csv(os.path.join(results_dir, filename), delim_whitespace=True, header=None, names=['rho', 'rhovx', 'rhovy', 'rhovz', 'Bx', 'By', 'Bz', 'Etot']) | ||
for quantity in quantities: | ||
quantities[quantity][stepDx].append(df[quantity].values.reshape((ny, nx))) # Store the entire data array for each quantity | ||
# Convert lists to numpy arrays | ||
for quantity in quantities.keys(): | ||
quantities[quantity] = np.array(quantities[quantity]) | ||
|
||
times = np.array(times) | ||
times = np.unique(times) | ||
times = times | ||
|
||
# Define x-axis | ||
Dx = lx / nx | ||
x = Dx * np.arange(nx) + 0.5 * Dx | ||
|
||
# Create output directory for frames | ||
output_dir = 'frames' | ||
if os.path.exists(output_dir): | ||
shutil.rmtree(output_dir) | ||
os.makedirs(output_dir, exist_ok=True) | ||
|
||
# Define the update function for the animation | ||
def update(frame): | ||
plt.clf() # Clear the previous plot | ||
t = times[frame] | ||
|
||
# Plot the desired quantity | ||
plt.plot(x, quantities[quantity_name][frame, fixed_index, :], color='blue') | ||
plt.title(f'{quantity_name} at y={fixed_index}, t={times[frame]:.4f}') | ||
plt.xlabel('x') | ||
plt.ylabel(quantity_name) | ||
plt.grid(True) | ||
plt.tight_layout() | ||
|
||
# Set y-limits based on data range | ||
min_val = np.min(quantities[quantity_name][:, fixed_index, :]) | ||
max_val = np.max(quantities[quantity_name][:, fixed_index, :]) | ||
plt.ylim(min_val, max_val) | ||
|
||
Dx =np.asarray( [0.02 / (2 ** i) for i in range(len(nx_values))]) | ||
# Save the current frame | ||
plt.savefig(f'{output_dir}/frame_{frame:04d}.png') | ||
|
||
# Function to calculate L2 norm of error | ||
def calculate_error(computed, expected, nx): | ||
#return np.linalg.norm(computed -expected) | ||
return np.sum(abs(computed - expected))/nx | ||
# Create the figure | ||
fig = plt.figure(figsize=(8, 6)) | ||
|
||
for stepDx in quantities[studied_quantity]: | ||
factor = 2 ** stepDx | ||
# Create animation | ||
ani = FuncAnimation(fig, update, frames=len(times), interval=100) | ||
|
||
# Get nx for this stepDx | ||
nx = nx_values[stepDx] | ||
|
||
x = Dx[stepDx] * np.arange(nx) + 0.5 * Dx[stepDx] | ||
# Manually step through the frames with arrow keys | ||
def onclick(event): | ||
if event.key == 'right': | ||
ani.frame_seq = ani.new_frame_seq() | ||
fig.canvas.draw() | ||
|
||
#expected0 = 1e-6 * np.cos(2 * np.pi * (x - times[0] * (Dt))) | ||
#computed0 = quantities[studied_quantity][stepDx][0][fixed_index, :] | ||
#error0 = calculate_error(computed0, expected0, nx) | ||
|
||
expected_value = 1e-6 * np.cos(2 * np.pi * (x - times[time_index])) | ||
|
||
# Extract computed value for this time_index | ||
computed_value = quantities[studied_quantity][stepDx][time_index][fixed_index, :] | ||
|
||
# Calculate error for this Dx | ||
error = calculate_error(computed_value, expected_value , nx) #/ error0 | ||
|
||
errors[stepDx] = error | ||
|
||
# Assuming Dx and errors are your data arrays | ||
# Log-transform the data | ||
log_Dx = np.log(Dx) | ||
log_errors = np.log(errors) | ||
|
||
# Perform a linear fit to the log-log data | ||
coefficients = np.polyfit(log_Dx, log_errors, 1) | ||
|
||
# Extract the slope (order of accuracy) and intercept | ||
slope, intercept = coefficients | ||
|
||
# Generate the fitted line for plotting | ||
fitted_log_errors = np.polyval(coefficients, log_Dx) | ||
fitted_errors = np.exp(fitted_log_errors) | ||
|
||
# Plot the original data and the fitted line | ||
plt.figure(figsize=(12, 8)) | ||
plt.loglog(Dx, errors, marker='o', label='Numerical Error') | ||
#plt.loglog(Dx,np.exp(log_Dx*slope + intercept), label="manual") | ||
plt.loglog(Dx, fitted_errors, linestyle='--', label=f'Fitted Line (slope={slope:.2f})') | ||
plt.xlabel('Dx') | ||
plt.ylabel('L2 Norm of Error') | ||
plt.title('L2 Norm of Error vs. Dx') | ||
plt.grid(True) | ||
plt.legend() | ||
plt.show() | ||
# Connect key press event | ||
fig.canvas.mpl_connect('key_press_event', onclick) | ||
|
||
for stepDx in quantities[studied_quantity]: | ||
computed_value = quantities[studied_quantity][stepDx][time_index][fixed_index, :] | ||
plt.plot(Dx[stepDx]*np.arange(nx_values[stepDx]), computed_value, label=f"dx = {Dx[stepDx]}") | ||
plt.legend() | ||
# Show plot (optional, can comment out if just saving frames) | ||
plt.show() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.