-
Notifications
You must be signed in to change notification settings - Fork 94
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
87 changed files
with
3,229 additions
and
2,736 deletions.
There are no files selected for viewing
Binary file not shown.
Binary file not shown.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,25 @@ | ||
# Keep your Eyes on the Lane: Real-time Attention-guided Lane Detection | ||
|
||
## Introduction | ||
|
||
```latex | ||
@InProceedings{tabelini2021cvpr, | ||
author = {Lucas Tabelini | ||
and Rodrigo Berriel | ||
and Thiago M. Paix\~ao | ||
and Claudine Badue | ||
and Alberto Ferreira De Souza | ||
and Thiago Oliveira-Santos}, | ||
title = {{Keep your Eyes on the Lane: Real-time Attention-guided Lane Detection}}, | ||
booktitle = {Conference on Computer Vision and Pattern Recognition (CVPR)}, | ||
year = {2021} | ||
} | ||
``` | ||
|
||
## Models | ||
|
||
| Architecture| Backbone |Dataset | Metric | Config| Checkpoints | | ||
|-------------|----------|--------|--------|-------|--------------| | ||
| LaneATT | ResNet18 | CULane || [config](https://github.com/Turoad/lanedet/blob/main/configs/laneatt/resnet18_culane.py) | comming soon| | ||
| LaneATT | ResNet18 | TuSimple || [config](https://github.com/Turoad/lanedet/blob/main/configs/laneatt/resnet18_tusimple.py) | comming soon| | ||
| LaneATT | ResNet34 | TuSimple || [config](https://github.com/Turoad/lanedet/blob/main/configs/laneatt/resnet34_tusimple.py) | comming soon| |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,119 @@ | ||
net = dict( | ||
type='Detector', | ||
) | ||
|
||
backbone = dict( | ||
type='ResNetWrapper', | ||
resnet='resnet18', | ||
pretrained=True, | ||
replace_stride_with_dilation=[False, False, False], | ||
out_conv=False, | ||
) | ||
featuremap_out_channel = 512 | ||
featuremap_out_stride = 32 | ||
|
||
aggregator = None | ||
|
||
num_points = 72 | ||
max_lanes = 4 | ||
sample_y = range(589, 230, -20) | ||
|
||
heads = dict(type='LaneATT', | ||
anchors_freq_path='.cache/culane_anchors_freq.pt', | ||
topk_anchors=1000) | ||
|
||
train_parameters = dict( | ||
conf_threshold=None, | ||
nms_thres=15., | ||
nms_topk=3000 | ||
) | ||
test_parameters = dict( | ||
conf_threshold=0.5, | ||
nms_thres=50, | ||
nms_topk=max_lanes | ||
) | ||
|
||
optimizer = dict( | ||
type = 'AdamW', | ||
lr = 0.0003, | ||
) | ||
|
||
epochs = 15 | ||
batch_size = 8 | ||
total_iter = (88880 // batch_size) * epochs | ||
scheduler = dict( | ||
type = 'CosineAnnealingLR', | ||
T_max = total_iter | ||
) | ||
|
||
eval_ep = 1 | ||
save_ep = 1 | ||
|
||
img_norm = dict( | ||
mean=[103.939, 116.779, 123.68], | ||
std=[1., 1., 1.] | ||
) | ||
ori_img_w=1640 | ||
ori_img_h=590 | ||
img_w=640 | ||
img_h=360 | ||
cut_height=0 | ||
|
||
train_process = [ | ||
dict(type='GenerateLaneLine', | ||
transforms = ( | ||
dict( | ||
name = 'Affine', | ||
parameters = dict( | ||
translate_px = dict( | ||
x = (-25, 25), | ||
y = (-10, 10) | ||
), | ||
rotate=(-6, 6), | ||
scale=(0.85, 1.15) | ||
) | ||
), | ||
dict( | ||
name = 'HorizontalFlip', | ||
parameters = dict( | ||
p=0.5 | ||
), | ||
) | ||
), | ||
wh = (img_w, img_h), | ||
), | ||
dict(type='ToTensor', keys=['img', 'lane_line']), | ||
] | ||
|
||
val_process = [ | ||
dict(type='GenerateLaneLine'), | ||
dict(type='ToTensor', keys=['img']), | ||
] | ||
|
||
dataset_path = './data/CULane' | ||
dataset_type = 'CULane' | ||
dataset = dict( | ||
train=dict( | ||
type=dataset_type, | ||
data_root=dataset_path, | ||
split='train', | ||
processes=train_process, | ||
), | ||
val=dict( | ||
type=dataset_type, | ||
data_root=dataset_path, | ||
split='test', | ||
processes=val_process, | ||
), | ||
test=dict( | ||
type=dataset_type, | ||
data_root=dataset_path, | ||
split='test', | ||
processes=val_process, | ||
) | ||
) | ||
|
||
|
||
workers = 12 | ||
log_interval = 100 | ||
seed=0 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,117 @@ | ||
net = dict( | ||
type='Detector', | ||
) | ||
|
||
backbone = dict( | ||
type='ResNetWrapper', | ||
resnet='resnet18', | ||
pretrained=True, | ||
replace_stride_with_dilation=[False, False, False], | ||
out_conv=False, | ||
) | ||
featuremap_out_channel = 512 | ||
featuremap_out_stride = 32 | ||
|
||
aggregator = None | ||
|
||
num_points = 72 | ||
max_lanes = 5 | ||
sample_y=range(710, 150, -10) | ||
|
||
heads = dict(type='LaneATT', | ||
anchors_freq_path='.cache/tusimple_anchors_freq.pt', | ||
topk_anchors=1000) | ||
|
||
train_parameters = dict( | ||
conf_threshold=None, | ||
nms_thres=15., | ||
nms_topk=3000 | ||
) | ||
test_parameters = dict( | ||
conf_threshold=0.2, | ||
nms_thres=45, | ||
nms_topk=max_lanes | ||
) | ||
|
||
optimizer = dict( | ||
type = 'Adam', | ||
lr = 0.0003, | ||
) | ||
|
||
epochs = 100 | ||
batch_size = 8 | ||
total_iter = (3616 // batch_size) * epochs | ||
scheduler = dict( | ||
type = 'CosineAnnealingLR', | ||
T_max = total_iter | ||
) | ||
|
||
eval_ep = 1 | ||
save_ep = epochs | ||
|
||
ori_img_w=1280 | ||
ori_img_h=720 | ||
img_w=640 | ||
img_h=360 | ||
cut_height=0 | ||
|
||
train_process = [ | ||
dict(type='GenerateLaneLine', | ||
transforms = ( | ||
dict( | ||
name = 'Affine', | ||
parameters = dict( | ||
translate_px = dict( | ||
x = (-25, 25), | ||
y = (-10, 10) | ||
), | ||
rotate=(-6, 6), | ||
scale=(0.85, 1.15) | ||
) | ||
), | ||
dict( | ||
name = 'HorizontalFlip', | ||
parameters = dict( | ||
p=0.5 | ||
), | ||
) | ||
), | ||
wh = (img_w, img_h), | ||
), | ||
dict(type='ToTensor', keys=['img', 'lane_line']), | ||
] | ||
|
||
val_process = [ | ||
dict(type='GenerateLaneLine', wh=(img_w, img_h)), | ||
dict(type='ToTensor', keys=['img']), | ||
] | ||
|
||
dataset_path = './data/tusimple' | ||
test_json_file = 'data/tusimple/test_label.json' | ||
dataset_type = 'TuSimple' | ||
|
||
dataset = dict( | ||
train=dict( | ||
type=dataset_type, | ||
data_root=dataset_path, | ||
split='trainval', | ||
processes=train_process, | ||
), | ||
val=dict( | ||
type=dataset_type, | ||
data_root=dataset_path, | ||
split='test', | ||
processes=val_process, | ||
), | ||
test=dict( | ||
type=dataset_type, | ||
data_root=dataset_path, | ||
split='test', | ||
processes=val_process, | ||
) | ||
) | ||
|
||
|
||
workers = 12 | ||
log_interval = 100 | ||
seed=0 |
Oops, something went wrong.