Wrapper around pandas
library, which detects separator, encoding
and type of the file. It allows to get a group of files with a matching pattern (python or glob regex).
It can read both local and remote files (HTTP/HTTPS, FTP/FTPS/SFTP or S3/S3N/S3A).
The supported file types are csv
, excel
, json
, parquet
and xml
.
ℹ️ If the desired type is not yet supported, feel free to open an issue or to directly open a PR with the code !
Please, read the documentation for more information
pip install peakina
Considering a file file.csv
a;b
0;0
0;1
Just type
>>> import peakina as pk
>>> pk.read_pandas('file.csv')
a b
0 0 0
1 0 1
Or files on a FTPS server:
- my_data_2015.csv
- my_data_2016.csv
- my_data_2017.csv
- my_data_2018.csv
You can just type
>>> pk.read_pandas('ftps://<path>/my_data_\\d{4}\\.csv$', match='regex', dtype={'a': 'str'})
a b __filename__
0 '0' 0 'my_data_2015.csv'
1 '0' 1 'my_data_2015.csv'
2 '1' 0 'my_data_2016.csv'
3 '1' 1 'my_data_2016.csv'
4 '3' 0 'my_data_2017.csv'
5 '3' 1 'my_data_2017.csv'
6 '4' 0 'my_data_2018.csv'
7 '4' 1 'my_data_2018.csv'
You may want to keep the last result in cache, to avoid downloading and extracting the file if it didn't change:
>>> from peakina.cache import Cache
>>> cache = Cache.get_cache('memory') # in-memory cache
>>> df = pk.read_pandas('file.csv', expire=3600, cache=cache)
In this example, the resulting dataframe will be fetched from the cache, unless file.csv
modification time has changed on disk, or unless the cache is older than 1 hour.
For persistent caching, use: cache = Cache.get_cache('hdf', cache_dir='/tmp')
If you just want to download a file, without converting it to a pandas dataframe:
>>> uri = 'https://i.imgur.com/V9x88.jpg'
>>> f = pk.fetch(uri)
>>> f.get_str_mtime()
'2012-11-04T17:27:14Z'
>>> with f.open() as stream:
... print('Image size:', len(stream.read()), 'bytes')
...
Image size: 60284 bytes