Skip to content

Performance Regression Test - Score Director #117

Performance Regression Test - Score Director

Performance Regression Test - Score Director #117

# - Runs entirely on a single machine, a self-hosted runner on Github Actions.
# - Both baseline and SUT (Software Under Test) are built from source first,
# as it is wasteful to run the baseline only to find out that the SUT does not build.
# - The baseline is established first, then the SUT is measured.
# - Each benchmark gives a 99.9 % confidence interval.
# - The confidence intervals are compared to determine if the branch under test is a regression or an improvement.
# - The error threshold is expected to be below +/- 2.0 %.
name: Performance Regression Test - Score Director
on:
workflow_dispatch:
inputs:
jdk:
description: 'JDK version'
default: '21'
required: true
baseline:
description: 'Timefold Solver release'
default: '1.17.0'
required: true
branch:
description: 'Branch to benchmark (needs to use 999-SNAPSHOT)'
default: 'main'
required: true
branch_owner:
description: 'User owning the branch'
default: 'TimefoldAI'
required: true
async_profiler_version:
description: 'async-profiler version'
default: '3.0'
required: true
jobs:
build_baseline:
runs-on: ubuntu-latest # Leverage massive parallelization of Github-hosted runners.
strategy:
fail-fast: true # If one compilation fails, abort everything.
matrix:
example: [cloud_balancing, conference_scheduling, curriculum_course, examination, machine_reassignment, meeting_scheduling, nurse_rostering, patient_admission_scheduling, task_assigning, traveling_tournament, tsp, vehicle_routing]
env:
MVN_USERNAME: '${{ secrets.JFROG_ENTERPRISE_READ_ONLY_ACCESS_USERNAME }}'
MVN_PASSWORD: '${{ secrets.JFROG_ENTERPRISE_READ_ONLY_ACCESS_TOKEN }}'
steps:
- name: Checkout timefold-solver-benchmarks
uses: actions/checkout@v4
with:
repository: TimefoldAI/timefold-solver-benchmarks
path: ./timefold-solver-benchmarks
- name: Setup JDK and Maven
uses: actions/setup-java@v4
with:
java-version: ${{ github.event.inputs.jdk }}
distribution: 'temurin'
cache: 'maven'
server-id: 'timefold-solver-enterprise'
server-username: 'MVN_USERNAME'
server-password: 'MVN_PASSWORD'
- name: Setup Async Profiler
working-directory: ./timefold-solver-benchmarks
run: |
export FILENAME=async-profiler-${{ github.event.inputs.async_profiler_version }}-linux-x64.tar.gz
wget https://github.com/async-profiler/async-profiler/releases/download/v${{ github.event.inputs.async_profiler_version }}/$FILENAME
tar -xzf $FILENAME
ls -l
- name: Compile the benchmark
working-directory: ./timefold-solver-benchmarks
shell: bash
run: |
mvn clean install -B -Dquickly -Dversion.ai.timefold.solver=${{ github.event.inputs.baseline }} -Dversion.tools.provider="${{ github.event.inputs.async_profiler_version }}"
mv target/benchmarks.jar benchmarks-baseline.jar
- name: Upload the binary
uses: actions/upload-artifact@v4
with:
name: binary-${{ matrix.example }}-${{ github.event.inputs.baseline }}
path: ./timefold-solver-benchmarks/benchmarks-baseline.jar
if-no-files-found: error
build_sut:
runs-on: ubuntu-latest # Leverage massive parallelization of Github-hosted runners.
strategy:
fail-fast: true # If one compilation fails, abort everything.
matrix:
example: [cloud_balancing, conference_scheduling, curriculum_course, examination, machine_reassignment, meeting_scheduling, nurse_rostering, patient_admission_scheduling, task_assigning, traveling_tournament, tsp, vehicle_routing]
env:
MVN_USERNAME: '${{ secrets.JFROG_ENTERPRISE_READ_ONLY_ACCESS_USERNAME }}'
MVN_PASSWORD: '${{ secrets.JFROG_ENTERPRISE_READ_ONLY_ACCESS_TOKEN }}'
steps:
- name: Checkout timefold-solver-benchmarks
uses: actions/checkout@v4
with:
repository: TimefoldAI/timefold-solver-benchmarks
path: ./timefold-solver-benchmarks
- name: Setup JDK and Maven
uses: actions/setup-java@v4
with:
java-version: ${{ github.event.inputs.jdk }}
distribution: 'temurin'
cache: 'maven'
server-id: 'timefold-solver-enterprise'
server-username: 'MVN_USERNAME'
server-password: 'MVN_PASSWORD'
- name: Setup Async Profiler
working-directory: ./timefold-solver-benchmarks
run: |
export FILENAME=async-profiler-${{ github.event.inputs.async_profiler_version }}-linux-x64.tar.gz
wget https://github.com/async-profiler/async-profiler/releases/download/v${{ github.event.inputs.async_profiler_version }}/$FILENAME
tar -xzf $FILENAME
ls -l
- name: Checkout timefold-solver
uses: actions/checkout@v4
with:
repository: ${{ github.event.inputs.branch_owner }}/timefold-solver
ref: ${{ github.event.inputs.branch }}
path: ./timefold-solver
- name: Quickly build timefold-solver
working-directory: ./timefold-solver
shell: bash
run: mvn -B -Dquickly clean install
# Clone timefold-solver-enterprise
- name: Checkout timefold-solver-enterprise (Specified)
id: checkout-solver-enterprise
uses: actions/checkout@v4
continue-on-error: true
with:
repository: TimefoldAI/timefold-solver-enterprise
ref: ${{ github.event.inputs.branch }}
token: ${{ secrets.BENCHMARK_PUBLISH_TOKEN }}
path: ./timefold-solver-enterprise
- name: Checkout timefold-solver-enterprise (Fallback)
if: steps.checkout-solver-enterprise.outcome != 'success'
uses: actions/checkout@v4
with:
repository: TimefoldAI/timefold-solver-enterprise
ref: main
token: ${{ secrets.BENCHMARK_PUBLISH_TOKEN }}
path: ./timefold-solver-enterprise
- name: Quickly build timefold-solver-enterprise
working-directory: ./timefold-solver-enterprise
shell: bash
run: mvn -B -Dquickly clean install
- name: Compile the benchmarks
working-directory: ./timefold-solver-benchmarks
shell: bash
run: |
mvn clean install -B -Dquickly -Dversion.tools.provider="${{ github.event.inputs.async_profiler_version }}"
mv target/benchmarks.jar benchmarks-sut.jar
- name: Upload the binary
uses: actions/upload-artifact@v4
with:
name: binary-${{ matrix.example }}-${{ github.event.inputs.branch }}
path: ./timefold-solver-benchmarks/benchmarks-sut.jar
if-no-files-found: error
benchmark:
needs: [build_baseline, build_sut]
runs-on: self-hosted # We need a stable machine to actually run the benchmarks.
strategy:
fail-fast: false # Jobs fail if the benchmark error is over predefined thresholds; other benchmarks continue.
matrix:
example: [cloud_balancing, conference_scheduling, curriculum_course, examination, machine_reassignment, meeting_scheduling, nurse_rostering, patient_admission_scheduling, task_assigning, traveling_tournament, tsp, vehicle_routing]
env:
MVN_USERNAME: '${{ secrets.JFROG_ENTERPRISE_READ_ONLY_ACCESS_USERNAME }}'
MVN_PASSWORD: '${{ secrets.JFROG_ENTERPRISE_READ_ONLY_ACCESS_TOKEN }}'
steps:
- name: Setup JDK and Maven
uses: actions/setup-java@v4
with:
java-version: ${{ github.event.inputs.jdk }}
distribution: 'temurin'
cache: 'maven'
server-id: 'timefold-solver-enterprise'
server-username: 'MVN_USERNAME'
server-password: 'MVN_PASSWORD'
- name: Setup Async Profiler
working-directory: ./timefold-solver-benchmarks
run: |
export FILENAME=async-profiler-${{ github.event.inputs.async_profiler_version }}-linux-x64.tar.gz
wget https://github.com/async-profiler/async-profiler/releases/download/v${{ github.event.inputs.async_profiler_version }}/$FILENAME
tar -xzf $FILENAME
ls -l
- name: (Baseline) Download the benchmark
uses: actions/download-artifact@v4
with:
name: binary-${{ matrix.example }}-${{ github.event.inputs.baseline }}
path: ./timefold-solver-benchmarks/
- name: (SUT) Download the benchmark
uses: actions/download-artifact@v4
with:
name: binary-${{ matrix.example }}-${{ github.event.inputs.branch }}
path: ./timefold-solver-benchmarks/
# Fine-tuned for stability on GHA.
- name: Configure the benchmark
working-directory: ./timefold-solver-benchmarks
shell: bash
run: |
echo "forks=15" > scoredirector-benchmark.properties
echo "warmup_iterations=5" >> scoredirector-benchmark.properties
echo "measurement_iterations=5" >> scoredirector-benchmark.properties
echo "relative_score_error_threshold=0.02" >> scoredirector-benchmark.properties
echo "score_director_type=cs" >> scoredirector-benchmark.properties
echo "example=${{ matrix.example }}" >> scoredirector-benchmark.properties
cat scoredirector-benchmark.properties
chmod +x run-scoredirector.sh
- name: (Baseline) Run the benchmark
working-directory: ./timefold-solver-benchmarks
id: benchmark_baseline
env:
RUN_ID: ${{ github.event.inputs.baseline }}
shell: bash
run: |
cp benchmarks-baseline.jar target/benchmarks.jar
./run-scoredirector.sh
echo "RANGE_START=$(jq '.[0].primaryMetric.scoreConfidence[0]|round' results/scoredirector/${{ github.event.inputs.baseline }}/results.json)" >> "$GITHUB_OUTPUT"
echo "RANGE_END=$(jq '.[0].primaryMetric.scoreConfidence[1]|round' results/scoredirector/${{ github.event.inputs.baseline }}/results.json)" >> "$GITHUB_OUTPUT"
echo "RANGE_MID=$(jq '.[0].primaryMetric.score|round' results/scoredirector/${{ github.event.inputs.baseline }}/results.json)" >> "$GITHUB_OUTPUT"
- name: (SUT) Run the benchmark
id: benchmark_new
working-directory: ./timefold-solver-benchmarks
env:
RUN_ID: ${{ github.event.inputs.branch }}
shell: bash
run: |
rm target/benchmarks.jar
cp benchmarks-sut.jar target/benchmarks.jar
./run-scoredirector.sh
echo "RANGE_START=$(jq '.[0].primaryMetric.scoreConfidence[0]|round' results/scoredirector/${{ github.event.inputs.branch }}/results.json)" >> "$GITHUB_OUTPUT"
echo "RANGE_END=$(jq '.[0].primaryMetric.scoreConfidence[1]|round' results/scoredirector/${{ github.event.inputs.branch }}/results.json)" >> "$GITHUB_OUTPUT"
echo "RANGE_MID=$(jq '.[0].primaryMetric.score|round' results/scoredirector/${{ github.event.inputs.branch }}/results.json)" >> "$GITHUB_OUTPUT"
- name: Archive benchmark data
uses: actions/upload-artifact@v4
with:
name: results-${{ matrix.example }}-${{ github.event.inputs.baseline }}_vs_${{ github.event.inputs.branch }}
path: |
./timefold-solver-benchmarks/scoredirector-benchmark.properties
./timefold-solver-benchmarks/results/scoredirector
- name: Report results
working-directory: ./timefold-solver-benchmarks
env:
OLD_RANGE_START: ${{ steps.benchmark_baseline.outputs.RANGE_START }}
OLD_RANGE_MID: ${{ steps.benchmark_baseline.outputs.RANGE_MID }}
OLD_RANGE_END: ${{ steps.benchmark_baseline.outputs.RANGE_END }}
NEW_RANGE_START: ${{ steps.benchmark_new.outputs.RANGE_START }}
NEW_RANGE_MID: ${{ steps.benchmark_new.outputs.RANGE_MID }}
NEW_RANGE_END: ${{ steps.benchmark_new.outputs.RANGE_END }}
shell: bash
run: |
export OLD_DEV=$(echo "scale=2; ($OLD_RANGE_MID / $OLD_RANGE_START) * 100 - 100" | bc)
export NEW_DEV=$(echo "scale=2; ($NEW_RANGE_MID / $NEW_RANGE_START) * 100 - 100" | bc)
export DIFF_START=$(echo "scale=2; ($OLD_RANGE_START / $NEW_RANGE_START) * 100" | bc)
export DIFF_MID=$(echo "scale=2; ($OLD_RANGE_MID / $NEW_RANGE_MID) * 100" | bc)
export DIFF_END=$(echo "scale=2; ($OLD_RANGE_END / $NEW_RANGE_END) * 100" | bc)
export FAIL=false
if (( $(echo "$DIFF_MID >= 98.00" | bc -l) && $(echo "$DIFF_MID <= 102.00"|bc -l) )); then
# Ignore differences of up to 2 %; we can't expect that level of precision anyway.
exit 0
else
if [ "$NEW_RANGE_START" -le "$OLD_RANGE_END" ] && [ "$NEW_RANGE_END" -ge "$OLD_RANGE_START" ]; then
if [ "$NEW_RANGE_START" -ge "$OLD_RANGE_MID" ]; then
echo "### 🍀 Possible improvement 🍀" >> $GITHUB_STEP_SUMMARY
elif [ "$OLD_RANGE_END" -le "$NEW_RANGE_MID" ]; then
echo "### ⚠️ Possible regression ⚠️" >> $GITHUB_STEP_SUMMARY
else
exit 0
fi
elif [ "$NEW_RANGE_START" -gt "$OLD_RANGE_END" ]; then
echo "### 🚀🚀🚀 Statistically significant improvement 🚀🚀🚀" >> $GITHUB_STEP_SUMMARY
else
echo "### ‼️‼️‼️ Statistically significant regression ‼️‼️‼️" >> $GITHUB_STEP_SUMMARY
export FAIL=true
fi
fi
echo "| | **Ref** | **Mean** |" >> $GITHUB_STEP_SUMMARY
echo "|:------:|:-----------:|:-----------------:|" >> $GITHUB_STEP_SUMMARY
echo "| _Old_ | [v${{ github.event.inputs.baseline }}](https://github.com/TimefoldAI/timefold-solver/releases/tag/v${{ github.event.inputs.baseline }}) | ${OLD_RANGE_MID} ± ${OLD_DEV} % |" >> $GITHUB_STEP_SUMMARY
echo "| _New_ | [${{ github.event.inputs.branch_owner }}'s ${{ github.event.inputs.branch }}](https://github.com/${{ github.event.inputs.branch_owner }}/timefold-solver/tree/${{ github.event.inputs.branch }}) | ${NEW_RANGE_MID} ± ${NEW_DEV} % |" >> $GITHUB_STEP_SUMMARY
echo "| _Diff_ | | ${DIFF_MID} % |" >> $GITHUB_STEP_SUMMARY
echo "" >> $GITHUB_STEP_SUMMARY
echo "Mean is in operations per second. Higher is better." >> $GITHUB_STEP_SUMMARY
echo "Mean ± X % describes a 99.9 % confidence interval." >> $GITHUB_STEP_SUMMARY
echo "Diff under 100 % represents an improvement, over 100 % a regression." >> $GITHUB_STEP_SUMMARY
if [ "$FAIL" = true ]; then
exit 1
fi