-
Notifications
You must be signed in to change notification settings - Fork 246
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
🚀 Use vocabulary config for characters and subwords
- Loading branch information
Showing
11 changed files
with
310 additions
and
77 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,131 @@ | ||
# Copyright 2020 Huy Le Nguyen (@usimarit) | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import os | ||
import math | ||
import argparse | ||
from tensorflow_asr.utils import setup_environment, setup_strategy | ||
|
||
setup_environment() | ||
import tensorflow as tf | ||
|
||
DEFAULT_YAML = os.path.join(os.path.abspath(os.path.dirname(__file__)), "config.yml") | ||
|
||
tf.keras.backend.clear_session() | ||
|
||
parser = argparse.ArgumentParser(prog="Conformer Training") | ||
|
||
parser.add_argument("--config", type=str, default=DEFAULT_YAML, | ||
help="The file path of model configuration file") | ||
|
||
parser.add_argument("--max_ckpts", type=int, default=10, | ||
help="Max number of checkpoints to keep") | ||
|
||
parser.add_argument("--tfrecords", default=False, action="store_true", | ||
help="Whether to use tfrecords") | ||
|
||
parser.add_argument("--tbs", type=int, default=None, | ||
help="Train batch size per replica") | ||
|
||
parser.add_argument("--ebs", type=int, default=None, | ||
help="Evaluation batch size per replica") | ||
|
||
parser.add_argument("--devices", type=int, nargs="*", default=[0], | ||
help="Devices' ids to apply distributed training") | ||
|
||
parser.add_argument("--mxp", default=False, action="store_true", | ||
help="Enable mixed precision") | ||
|
||
parser.add_argument("--cache", default=False, action="store_true", | ||
help="Enable caching for dataset") | ||
|
||
args = parser.parse_args() | ||
|
||
tf.config.optimizer.set_experimental_options({"auto_mixed_precision": args.mxp}) | ||
|
||
strategy = setup_strategy(args.devices) | ||
|
||
from tensorflow_asr.configs.user_config import UserConfig | ||
from tensorflow_asr.datasets.asr_dataset import ASRTFRecordDataset, ASRSliceDataset | ||
from tensorflow_asr.featurizers.speech_featurizers import TFSpeechFeaturizer | ||
from tensorflow_asr.featurizers.text_featurizers import CharFeaturizer | ||
from tensorflow_asr.runners.transducer_runners import TransducerTrainerGA | ||
from tensorflow_asr.models.conformer import Conformer | ||
from tensorflow_asr.optimizers.schedules import TransformerSchedule | ||
|
||
config = UserConfig(DEFAULT_YAML, args.config, learning=True) | ||
speech_featurizer = TFSpeechFeaturizer(config["speech_config"]) | ||
text_featurizer = CharFeaturizer(config["decoder_config"]) | ||
|
||
if args.tfrecords: | ||
train_dataset = ASRTFRecordDataset( | ||
data_paths=config["learning_config"]["dataset_config"]["train_paths"], | ||
tfrecords_dir=config["learning_config"]["dataset_config"]["tfrecords_dir"], | ||
speech_featurizer=speech_featurizer, | ||
text_featurizer=text_featurizer, | ||
augmentations=config["learning_config"]["augmentations"], | ||
stage="train", cache=args.cache, shuffle=True | ||
) | ||
eval_dataset = ASRTFRecordDataset( | ||
data_paths=config["learning_config"]["dataset_config"]["eval_paths"], | ||
tfrecords_dir=config["learning_config"]["dataset_config"]["tfrecords_dir"], | ||
speech_featurizer=speech_featurizer, | ||
text_featurizer=text_featurizer, | ||
stage="eval", cache=args.cache, shuffle=True | ||
) | ||
else: | ||
train_dataset = ASRSliceDataset( | ||
data_paths=config["learning_config"]["dataset_config"]["train_paths"], | ||
speech_featurizer=speech_featurizer, | ||
text_featurizer=text_featurizer, | ||
augmentations=config["learning_config"]["augmentations"], | ||
stage="train", cache=args.cache, shuffle=True | ||
) | ||
eval_dataset = ASRSliceDataset( | ||
data_paths=config["learning_config"]["dataset_config"]["eval_paths"], | ||
speech_featurizer=speech_featurizer, | ||
text_featurizer=text_featurizer, | ||
stage="eval", cache=args.cache, shuffle=True | ||
) | ||
|
||
conformer_trainer = TransducerTrainerGA( | ||
config=config["learning_config"]["running_config"], | ||
text_featurizer=text_featurizer, strategy=strategy | ||
) | ||
|
||
with conformer_trainer.strategy.scope(): | ||
# build model | ||
conformer = Conformer( | ||
**config["model_config"], | ||
vocabulary_size=text_featurizer.num_classes | ||
) | ||
conformer._build(speech_featurizer.shape) | ||
conformer.summary(line_length=120) | ||
|
||
optimizer_config = config["learning_config"]["optimizer_config"] | ||
optimizer = tf.keras.optimizers.Adam( | ||
TransformerSchedule( | ||
d_model=config["model_config"]["dmodel"], | ||
warmup_steps=optimizer_config["warmup_steps"], | ||
max_lr=(0.05 / math.sqrt(config["model_config"]["dmodel"])) | ||
), | ||
beta_1=optimizer_config["beta1"], | ||
beta_2=optimizer_config["beta2"], | ||
epsilon=optimizer_config["epsilon"] | ||
) | ||
|
||
conformer_trainer.compile(model=conformer, optimizer=optimizer, | ||
max_to_keep=args.max_ckpts) | ||
|
||
conformer_trainer.fit(train_dataset, eval_dataset, train_bs=args.tbs, eval_bs=args.ebs) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,147 @@ | ||
# Copyright 2020 Huy Le Nguyen (@usimarit) | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import os | ||
import math | ||
import argparse | ||
from tensorflow_asr.utils import setup_environment, setup_strategy | ||
|
||
setup_environment() | ||
import tensorflow as tf | ||
|
||
DEFAULT_YAML = os.path.join(os.path.abspath(os.path.dirname(__file__)), "config.yml") | ||
|
||
tf.keras.backend.clear_session() | ||
|
||
parser = argparse.ArgumentParser(prog="Conformer Training") | ||
|
||
parser.add_argument("--config", type=str, default=DEFAULT_YAML, | ||
help="The file path of model configuration file") | ||
|
||
parser.add_argument("--max_ckpts", type=int, default=10, | ||
help="Max number of checkpoints to keep") | ||
|
||
parser.add_argument("--tfrecords", default=False, action="store_true", | ||
help="Whether to use tfrecords") | ||
|
||
parser.add_argument("--tbs", type=int, default=None, | ||
help="Train batch size per replica") | ||
|
||
parser.add_argument("--ebs", type=int, default=None, | ||
help="Evaluation batch size per replica") | ||
|
||
parser.add_argument("--devices", type=int, nargs="*", default=[0], | ||
help="Devices' ids to apply distributed training") | ||
|
||
parser.add_argument("--mxp", default=False, action="store_true", | ||
help="Enable mixed precision") | ||
|
||
parser.add_argument("--cache", default=False, action="store_true", | ||
help="Enable caching for dataset") | ||
|
||
parser.add_argument("--subwords", type=str, default=None, | ||
help="Path to file that stores generated subwords") | ||
|
||
parser.add_argument("--subwords_corpus", nargs="*", type=str, default=[], | ||
help="Transcript files for generating subwords") | ||
|
||
args = parser.parse_args() | ||
|
||
tf.config.optimizer.set_experimental_options({"auto_mixed_precision": args.mxp}) | ||
|
||
strategy = setup_strategy(args.devices) | ||
|
||
from tensorflow_asr.configs.user_config import UserConfig | ||
from tensorflow_asr.datasets.asr_dataset import ASRTFRecordDataset, ASRSliceDataset | ||
from tensorflow_asr.featurizers.speech_featurizers import TFSpeechFeaturizer | ||
from tensorflow_asr.featurizers.text_featurizers import SubwordFeaturizer | ||
from tensorflow_asr.runners.transducer_runners import TransducerTrainerGA | ||
from tensorflow_asr.models.conformer import Conformer | ||
from tensorflow_asr.optimizers.schedules import TransformerSchedule | ||
|
||
config = UserConfig(DEFAULT_YAML, args.config, learning=True) | ||
speech_featurizer = TFSpeechFeaturizer(config["speech_config"]) | ||
|
||
if args.subwords and os.path.exists(args.subwords): | ||
print("Loading subwords ...") | ||
text_featurizer = SubwordFeaturizer.load_from_file(config["decoder_config"], args.subwords) | ||
else: | ||
print("Generating subwords ...") | ||
text_featurizer = SubwordFeaturizer.build_from_corpus( | ||
config["decoder_config"], | ||
corpus_files=args.subwords_corpus | ||
) | ||
text_featurizer.subwords.save_to_file(args.subwords_prefix) | ||
|
||
if args.tfrecords: | ||
train_dataset = ASRTFRecordDataset( | ||
data_paths=config["learning_config"]["dataset_config"]["train_paths"], | ||
tfrecords_dir=config["learning_config"]["dataset_config"]["tfrecords_dir"], | ||
speech_featurizer=speech_featurizer, | ||
text_featurizer=text_featurizer, | ||
augmentations=config["learning_config"]["augmentations"], | ||
stage="train", cache=args.cache, shuffle=True | ||
) | ||
eval_dataset = ASRTFRecordDataset( | ||
data_paths=config["learning_config"]["dataset_config"]["eval_paths"], | ||
tfrecords_dir=config["learning_config"]["dataset_config"]["tfrecords_dir"], | ||
speech_featurizer=speech_featurizer, | ||
text_featurizer=text_featurizer, | ||
stage="eval", cache=args.cache, shuffle=True | ||
) | ||
else: | ||
train_dataset = ASRSliceDataset( | ||
data_paths=config["learning_config"]["dataset_config"]["train_paths"], | ||
speech_featurizer=speech_featurizer, | ||
text_featurizer=text_featurizer, | ||
augmentations=config["learning_config"]["augmentations"], | ||
stage="train", cache=args.cache, shuffle=True | ||
) | ||
eval_dataset = ASRSliceDataset( | ||
data_paths=config["learning_config"]["dataset_config"]["eval_paths"], | ||
speech_featurizer=speech_featurizer, | ||
text_featurizer=text_featurizer, | ||
stage="eval", cache=args.cache, shuffle=True | ||
) | ||
|
||
conformer_trainer = TransducerTrainerGA( | ||
config=config["learning_config"]["running_config"], | ||
text_featurizer=text_featurizer, strategy=strategy | ||
) | ||
|
||
with conformer_trainer.strategy.scope(): | ||
# build model | ||
conformer = Conformer( | ||
**config["model_config"], | ||
vocabulary_size=text_featurizer.num_classes | ||
) | ||
conformer._build(speech_featurizer.shape) | ||
conformer.summary(line_length=120) | ||
|
||
optimizer_config = config["learning_config"]["optimizer_config"] | ||
optimizer = tf.keras.optimizers.Adam( | ||
TransformerSchedule( | ||
d_model=config["model_config"]["dmodel"], | ||
warmup_steps=optimizer_config["warmup_steps"], | ||
max_lr=(0.05 / math.sqrt(config["model_config"]["dmodel"])) | ||
), | ||
beta_1=optimizer_config["beta1"], | ||
beta_2=optimizer_config["beta2"], | ||
epsilon=optimizer_config["epsilon"] | ||
) | ||
|
||
conformer_trainer.compile(model=conformer, optimizer=optimizer, | ||
max_to_keep=args.max_ckpts) | ||
|
||
conformer_trainer.fit(train_dataset, eval_dataset, train_bs=args.tbs, eval_bs=args.ebs) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -37,17 +37,14 @@ | |
|
||
setuptools.setup( | ||
name="TensorFlowASR", | ||
version="0.2.5", | ||
version="0.2.6", | ||
author="Huy Le Nguyen", | ||
author_email="[email protected]", | ||
description="Almost State-of-the-art Automatic Speech Recognition using Tensorflow 2", | ||
long_description=long_description, | ||
long_description_content_type="text/markdown", | ||
url="https://github.com/TensorSpeech/TensorFlowASR", | ||
packages=setuptools.find_packages(include=["tensorflow_asr*"]), | ||
package_data={ | ||
"tensorflow_asr": ["featurizers/*.txt"] | ||
}, | ||
install_requires=requirements, | ||
classifiers=[ | ||
"Programming Language :: Python :: 3.6", | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,16 +0,0 @@ | ||
# Copyright 2020 Huy Le Nguyen (@usimarit) | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
import os | ||
|
||
ENGLISH = os.path.abspath(os.path.join(os.path.dirname(__file__), "english.txt")) | ||
Oops, something went wrong.