Releases: Techtonique/mlsauce
Releases · Techtonique/mlsauce
v0.22.3
Generalize LSBoost gradient boosting to any base learner (alert: high performance)
See: https://thierrymoudiki.github.io/blog/2024/10/06/python/r/genericboosting
and examples directory examples/genboost*
Example:
import os
import mlsauce as ms
from sklearn.datasets import load_breast_cancer, load_iris, load_wine, load_digits
from sklearn.model_selection import train_test_split
from time import time
load_models = [load_breast_cancer, load_iris, load_wine]
for model in load_models:
data = model()
X = data.data
y= data.target
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = .2, random_state = 13)
clf = ms.LazyBoostingClassifier(verbose=0, ignore_warnings=True,
custom_metric=None, preprocess=False)
start = time()
models, predictioms = clf.fit(X_train, X_test, y_train, y_test)
print(f"\nElapsed: {time() - start} seconds\n")
print(models)
v0.19.1
version 0.19.1
- [Technical] install Cython first (specify version)
version 0.18.4
- Gaussian weights in
LSBoostRegressor
andLSBoostClassifier
randomized hidden layer
version 0.17.0
- add
ElasticNetRegressor
solver
toLSBoostRegressor
andLSBoostClassifier
version 0.16.0
- add clustering to
LSBoostRegressor
,LSBoostClassifier
, andAdaOpt
- add polynomial features to
LSBoostRegressor
,LSBoostClassifier
Also, more technical: remove distutils
(deprecated) and use setuptools
v0.12.3
version 0.12.3
- add prediction intervals to
LSBoostRegressor
(split conformal prediction,
split conformal prediction with Kernel Density Estimation, and split
conformal prediction bootstrap)
seeexamples/lsboost_regressor_pi.py
for examples - do not rescale columns with zero variance in
LSBoostRegressor
andLSBoostClassifier
- faster ridge regression for
LSBoostRegressor
andLSBoostClassifier
v0.10.0
- Delete dependency with
numpy.distutils
and usesetuptools
'Extension
instead.
v0.9.1
- Download datasets from the R-universe API
v0.8.11
v0.8.10
remove dust:
- install
numpy
beforesetup
- stop using
np.int
- update Makefile
- update examples
- no more refs to openmp (for now)
- update and align with R version
- submit conda version
- Command line:
pip install mlsauce
- Python:
import mlsauce as ms
import numpy as np
from sklearn.datasets import load_breast_cancer, load_wine, load_iris
from sklearn.model_selection import train_test_split
from time import time
# dataset
breast_cancer = load_breast_cancer()
X = breast_cancer.data
y = breast_cancer.target
# split data into training test and test set
X_train, X_test, y_train, y_test = train_test_split(X, y,
test_size=0.2)
# fit
obj = ms.LSBoostClassifier(tolerance=1e-2)
print(obj.get_params())
start = time()
obj.fit(X_train, y_train)
print(time()-start)
# predict
start = time()
print(obj.score(X_test, y_test))
print(time()-start)