Skip to content
/ mfem Public

Automatically exported from code.google.com/p/mfem

License

Notifications You must be signed in to change notification settings

TangLaoya/mfem

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

9 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

                    Finite Element Discretization Library
                                 version 3.0
                                   __
                       _ __ ___   / _|  ___  _ __ ___
                      | '_ ` _ \ | |_  / _ \| '_ ` _ \
                      | | | | | ||  _||  __/| | | | | |
                      |_| |_| |_||_|   \___||_| |_| |_|

                         http://mfem.googlecode.com

MFEM is a modular parallel C++ library for finite element methods. Its goal is
to enable the research and development of scalable finite element discretization
and solver algorithms through general finite element abstractions, accurate and
flexible visualization, and tight integration with the hypre library.

For building instructions, see the file INSTALL, or type "make help". Copyright
information and licensing restrictions can be found in the file COPYRIGHT.

The best starting point for new users interested in MFEM's features is the
interactive documentation in examples/README.html.

Conceptually, MFEM can be viewed as a finite element toolbox that provides the
building blocks for developing finite element algorithms in a manner similar to
that of MATLAB for linear algebra methods. In particular, MFEM provides support
for arbitrary high-order H1-conforming, discontinuous (L2), H(div)-conforming,
H(curl)-conforming and NURBS finite element spaces in 2D and 3D, as well as many
bilinear, linear and nonlinear forms defined on them. It enables the quick
prototyping of various finite element discretizations, including Galerkin
methods, mixed finite elements, Discontinuous Galerkin (DG), isogeometric
analysis and Discontinuous Petrov-Galerkin (DPG) approaches.

MFEM includes classes for dealing with a wide range of mesh types: triangular,
quadrilateral, tetrahedral and hexahedral, as well as surface and topologically
periodical meshes. It has general support for mesh refinement, including local
conforming and non-conforming (AMR) adaptive refinement. Arbitrary element
transformations, allowing for high-order mesh elements with curved boundaries,
are also supported.

MFEM is commonly used as a "finite element to linear algebra translator", since
it can take a problem described in terms of finite element-type objects, and
produce the corresponding linear algebra vectors and sparse matrices. In order
to facilitate this, MFEM uses compressed sparse row (CSR) sparse matrix storage
and includes simple smoothers and Krylov solvers, such as PCG, MINRES and GMRES,
as well as support for sequential sparse direct solvers from the SuiteSparse
library. Nonlinear solvers (the Newton method), and several explicit and
implicit Runge-Kutta time integrators are also available.

MFEM supports MPI-based parallelism throughout the library, and can readily be
used as a scalable unstructured finite element problem generator. MFEM-based
applications require minimal changes to transition from a serial to a
high-performing parallel version of the code, where they can take advantage of
the integrated scalable linear solvers from the hypre library. An experimental
support for OpenMP acceleration is also included.

For examples of using MFEM, see the examples/ directory, as well as the OpenGL
visualization tool GLVis which is available at http://glvis.googlecode.com.

About

Automatically exported from code.google.com/p/mfem

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages