Skip to content

THU-DA-6D-Pose-Group/BOP19_CDPN_2019ICCV

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

42 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

News

  • We have released the official training code of CDPN to reproduce the impressive results in our ICCV2019 paper.
  • Find CDPNv2 for BOP20 in the branch of bop2020
  • Find CDPN trained with PBR data for BOP20 in the branch of bop2019_pbr

BOP19_CDPN_2019ICCV

The modified version of CDPN ("CDPN: Coordinates-Based Disentangled Pose Network for Real-Time RGB-Based 6-DoF Object Pose Estimation" on ICCV 2019) for BOP: Benchmark for 6D Object Pose Estimation Challenge 2019.

Our test environments

  • Ubuntu 16.04 (64bit)
  • Python 3.6.7
  • Pytorch 0.4.1
  • CUDA 9.0
  • Bop_toolkit
  • numpy, cv2, plyfile, tqdm, scipy, progress, etc.

Detection

For detection, we trained a RetinaNet for each dataset on mmdetection.

Pose Estimation

In the BOP 2019 challenge, different from the paper, both of the rotation and translation are solved from the built 2D-3D correspondences by PnP algorithm. We trained a CDPN model for each object.

Data Preparation

  1. Download the 7 core datasets from the BOP website

  2. Download our trained models and detection results.

  3. Prepare the data as follows:

    Note:

    • models_eval: downloaded official models;
    • test/test_primesense: downloaded official BOP19 test set;
    • val:optionally, downloaded official val set;
    • trained_models: our provided trained models;
    • bbox_retinanet: our provided detection results;
    • exp: save the test result files
Root
├── dataset
│   ├── lmo_bop19
│   │   ├── models_eval 
│   │   └── test 
│   ├── tudl_bop19
│   │   ├── models_eval 
│   │   └── test 
│   ├── hb_bop19
│   │   ├── models_eval
│   │   ├── val 
│   │   └── test
│   ├── icbin_bop19
│   │   ├── models_eval
│   │   └── test 
│   ├── itodd_bop19
│   │   ├── models_eval 
│   │   ├── val
│   │   └── test
│   ├── tless_bop19
│   │   ├── models_eval
│   │   └── test_primesense 
│   └── ycbv_bop19
│       ├── models_eval 
│       └── test
├── trained_models
│   ├── lmo
│   │   ├── obj_ape.checkpoint
│   │   └── ...
│   └── ...
├── bbox_retinanet
│   ├── lmo
│   │   ├── lmo_test_bop19_000002.json
│   │   └── ... 
│   └── ...
├── lib
├── tools
├── detection
└── exp

Run

  1. In 'tools' directory, run
  sh run.sh

It will first generate a .csv file to record the result of each object for each dataset. The final result files can be found in 'exp/final_result/CDPN_xxxx-test.csv'

  1. Use the Bop_toolkit for evaluation.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%