This repo is the implementation of Tensorformer in Pytorch.
First you have to make sure that you have all dependencies in place. The simplest way to do so, is to use anaconda.
You can create an anaconda environment called mesh_funcspace using
conda env create -f environment.yaml
conda activate tensorformer
- We follow the ONet to generate all the data, including ShapeNet and ABC, where ABC is the guest dataset of ONet.
- After generating the dataset, we can put the data in
dataset
.
###ShapeNet
python main.py --ae --train --phase 1 --iteration 300000 --dataset data/data_per_category/data_per_category/00000000_all/00000000_vox256_img --sample_dir data/output/vessel_64 --sample_vox_size 64
python main.py --ae --train --phase 1 --iteration 300000 --dataset data/data_per_category/data_per_category/001_ling/001_vox256_img --sample_dir data/output/ling_64 --sample_vox_size 64
###ShapeNet
python main.py --ae --phase 1 --sample_dir samples/bsp_ae_out --dataset data/data_per_category/data_per_category/00000000_all/00000000_vox256_img --start 0 --end 20
###ABC
python main.py --ae --phase 1 --dataset data/data_per_category/data_per_category/001_ling/001_vox256_img --sample_dir data/output/ling_64 --start 0 --end 100
python evaluate.py