-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
58 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,58 @@ | ||
"""Test default grad and hessian""" | ||
|
||
import numpy as np | ||
from spey.math import value_and_grad, hessian | ||
import spey | ||
|
||
|
||
def test_uncorrelated_background(): | ||
"""tester for uncorrelated background model""" | ||
|
||
pdf_wrapper = spey.get_backend("default_pdf.uncorrelated_background") | ||
|
||
data = [36, 33] | ||
signal_yields = [12.0, 15.0] | ||
background_yields = [50.0, 48.0] | ||
background_unc = [12.0, 16.0] | ||
|
||
stat_model = pdf_wrapper( | ||
signal_yields=signal_yields, | ||
background_yields=background_yields, | ||
data=data, | ||
absolute_uncertainties=background_unc, | ||
analysis="multi_bin", | ||
xsection=0.123, | ||
) | ||
hess = hessian(stat_model)([1.0, 1.0]) | ||
nll, grad = value_and_grad(stat_model)([1.0, 1.0]) | ||
nll_apri, grad_apri = value_and_grad( | ||
stat_model, expected=spey.ExpectationType.apriori | ||
)([1.0, 1.0]) | ||
hess_apri = hessian(stat_model, expected=spey.ExpectationType.apriori)([1.0, 1.0]) | ||
|
||
hess_data = hessian(stat_model, expected=spey.ExpectationType.apriori, data=[22, 34])( | ||
[1.0, 1.0] | ||
) | ||
nll_dat, grad_dat = value_and_grad( | ||
stat_model, expected=spey.ExpectationType.apriori, data=[22, 34] | ||
)([1.0, 1.0]) | ||
|
||
assert np.allclose( | ||
hess, np.array([[2.13638959, 2.21570381], [2.21570381, 4.30030563]]) | ||
), "Hessian is wrong" | ||
assert np.isclose(nll, 37.47391613937222), "NLL is wrong" | ||
assert np.allclose(grad, np.array([14.89633938, 17.47861786])), "Gradient is wrong" | ||
assert np.isclose(nll_apri, 20.052816087791097), "NLL apriori is wrong" | ||
assert np.allclose( | ||
grad_apri, np.array([9.77796784, 12.1703729]) | ||
), "apriori Gradient is wrong" | ||
assert np.allclose( | ||
hess_apri, np.array([[3.04532025, 3.16068638], [3.16068638, 5.28374358]]) | ||
), "Hessian apriori is wrong" | ||
assert np.allclose( | ||
hess_data, np.array([[1.80428957, 1.88600725], [1.88600725, 3.97317276]]) | ||
), "Hessian data is wrong" | ||
assert np.isclose(nll_dat, 49.63922692607177), "NLL data is wrong" | ||
assert np.allclose( | ||
grad_dat, np.array([16.97673623, 19.54635648]) | ||
), "data Gradient is wrong" |