PyTorch Implementation of DCENet (https://arxiv.org/abs/2010.16267) for Trajectory Forecasting
python 3.8
pytorch 1.7.1
matplotlib
scipy
neptune-client
if you need
Processed data (./processed_data/train/train_merged0.npz
, ./processed_data/train/train_merged1.npz
, ./processed_data/train/train_merged2.npz
, ./processed_data/train/biwi_hotel.npz
) is requried.
You can obtain the processed data from the original repository (https://github.com/tanjatang/DCENet).
- Command for training
python main.py --gpu $GPU_NUMS --config $CONFIG_FILENAME
- Example
python main.py --gpu 0 --config config.json
- Command for evaluation
python evaluate.py --gpu $GPU_NUMS --config $CONFIG_FILENAME --resume-name #CHECKPOINT_FILENAME
- Example
python evaluate.py --gpu 0 --config config.json --resume-name best_model.pth
Criteria | Original Implementation (Tensorflow) | My Implementation (PyTorch) |
---|---|---|
ADE | 0.37 m | 0.36 m |
FDE | 0.76 m | 0.67 m |
Hausdorff Distance | 0.75 m | 0.67 m |
Speed Deviation | 0.06 m/s | 0.05 m/s |
Heading Error | 25.60 degree | 24.67 degree |
Criteria | Original Implementation (Tensorflow) | My Implementation (PyTorch) |
---|---|---|
ADE | 0.39 m | 0.42 m |
FDE | 0.78 m | 0.79 m |
Hausdorff Distance | 0.77 m | 0.78 m |
Speed Deviation | 0.06 m/s | 0.05 m/s |
Heading Error | 30.98 degree | 30.62 degree |
Model details and most of utility functions are from from the origianl DCENet repository (https://github.com/tanjatang/DCENet).
Codes for progress bar came from https://github.com/AaronHeee/MEAL.
Codes for early stopping came from https://github.com/Bjarten/early-stopping-pytorch.
I am on Ph.D course in Artificial Intelligence Lab. (Homepage), Gwangju Institute of Science and Technology (GIST, Homepage), Korea.