Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

refactor: add output dimensionality as a parameter in AbstractInterpolations #342

Merged
merged 3 commits into from
Oct 11, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion .github/workflows/Downgrade.yml
Original file line number Diff line number Diff line change
Expand Up @@ -21,7 +21,7 @@ jobs:
group:
- Core
version:
- '1'
- '1.10'
os:
- ubuntu-latest
- macos-latest
Expand Down
2 changes: 2 additions & 0 deletions .github/workflows/Invalidations.yml
Original file line number Diff line number Diff line change
Expand Up @@ -13,3 +13,5 @@ jobs:
evaluate-invalidations:
name: "Evaluate Invalidations"
uses: "SciML/.github/.github/workflows/invalidations.yml@v1"
with:
julia-version: "1.10"
17 changes: 10 additions & 7 deletions src/DataInterpolations.jl
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,7 @@ module DataInterpolations

### Interface Functionality

abstract type AbstractInterpolation{T} end
abstract type AbstractInterpolation{T, N} end

using LinearAlgebra, RecipesBase
using PrettyTables
Expand Down Expand Up @@ -92,8 +92,8 @@ export LinearInterpolation, QuadraticInterpolation, LagrangeInterpolation,

# added for RegularizationSmooth, JJS 11/27/21
### Regularization data smoothing and interpolation
struct RegularizationSmooth{uType, tType, T, T2, ITP <: AbstractInterpolation{T}} <:
AbstractInterpolation{T}
struct RegularizationSmooth{uType, tType, T, T2, N, ITP <: AbstractInterpolation{T, N}} <:
AbstractInterpolation{T, N}
u::uType
û::uType
t::tType
Expand All @@ -116,7 +116,8 @@ struct RegularizationSmooth{uType, tType, T, T2, ITP <: AbstractInterpolation{T}
alg,
Aitp,
extrapolate)
new{typeof(u), typeof(t), eltype(u), typeof(λ), typeof(Aitp)}(
N = get_output_dim(u)
new{typeof(u), typeof(t), eltype(u), typeof(λ), N, typeof(Aitp)}(
u,
û,
t,
Expand All @@ -143,8 +144,9 @@ struct CurvefitCache{
lbType,
algType,
pminType,
T
} <: AbstractInterpolation{T}
T,
N
} <: AbstractInterpolation{T, N}
u::uType
t::tType
m::mType # model type
Expand All @@ -155,9 +157,10 @@ struct CurvefitCache{
pmin::pminType # optimized params
extrapolate::Bool
function CurvefitCache(u, t, m, p0, ub, lb, alg, pmin, extrapolate)
N = get_output_dim(u)
new{typeof(u), typeof(t), typeof(m),
typeof(p0), typeof(ub), typeof(lb),
typeof(alg), typeof(pmin), eltype(u)}(u,
typeof(alg), typeof(pmin), eltype(u), N}(u,
t,
m,
p0,
Expand Down
12 changes: 6 additions & 6 deletions src/derivatives.jl
Original file line number Diff line number Diff line change
Expand Up @@ -151,14 +151,14 @@ function _derivative(A::BSplineInterpolation{<:AbstractVector{<:Number}}, t::Num
n = length(A.t)
scale = (A.p[idx + 1] - A.p[idx]) / (A.t[idx + 1] - A.t[idx])
t_ = A.p[idx] + (t - A.t[idx]) * scale
N = t isa ForwardDiff.Dual ? zeros(eltype(t), n) : A.N
spline_coefficients!(N, A.d - 1, A.k, t_)
sc = t isa ForwardDiff.Dual ? zeros(eltype(t), n) : A.sc
spline_coefficients!(sc, A.d - 1, A.k, t_)
ducum = zero(eltype(A.u))
if t == A.t[1]
ducum = (A.c[2] - A.c[1]) / (A.k[A.d + 2])
else
for i in 1:(n - 1)
ducum += N[i + 1] * (A.c[i + 1] - A.c[i]) / (A.k[i + A.d + 1] - A.k[i + 1])
ducum += sc[i + 1] * (A.c[i + 1] - A.c[i]) / (A.k[i + A.d + 1] - A.k[i + 1])
end
end
ducum * A.d * scale
Expand All @@ -172,14 +172,14 @@ function _derivative(A::BSplineApprox{<:AbstractVector{<:Number}}, t::Number, ig
idx = get_idx(A, t, iguess)
scale = (A.p[idx + 1] - A.p[idx]) / (A.t[idx + 1] - A.t[idx])
t_ = A.p[idx] + (t - A.t[idx]) * scale
N = t isa ForwardDiff.Dual ? zeros(eltype(t), A.h) : A.N
spline_coefficients!(N, A.d - 1, A.k, t_)
sc = t isa ForwardDiff.Dual ? zeros(eltype(t), A.h) : A.sc
spline_coefficients!(sc, A.d - 1, A.k, t_)
ducum = zero(eltype(A.u))
if t == A.t[1]
ducum = (A.c[2] - A.c[1]) / (A.k[A.d + 2])
else
for i in 1:(A.h - 1)
ducum += N[i + 1] * (A.c[i + 1] - A.c[i]) / (A.k[i + A.d + 1] - A.k[i + 1])
ducum += sc[i + 1] * (A.c[i + 1] - A.c[i]) / (A.k[i + A.d + 1] - A.k[i + 1])
end
end
ducum * A.d * scale
Expand Down
16 changes: 9 additions & 7 deletions src/integral_inverses.jl
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
abstract type AbstractIntegralInverseInterpolation{T} <: AbstractInterpolation{T} end
abstract type AbstractIntegralInverseInterpolation{T, N} <: AbstractInterpolation{T, N} end

"""
invert_integral(A::AbstractInterpolation)::AbstractIntegralInverseInterpolation
Expand Down Expand Up @@ -33,15 +33,16 @@ Can be easily constructed with `invert_integral(A::LinearInterpolation{<:Abstrac
- `t` : Given by `A.I` (the cumulative integral of `A`)
- `A` : The `LinearInterpolation` object
"""
struct LinearInterpolationIntInv{uType, tType, itpType, T} <:
AbstractIntegralInverseInterpolation{T}
struct LinearInterpolationIntInv{uType, tType, itpType, T, N} <:
AbstractIntegralInverseInterpolation{T, N}
u::uType
t::tType
extrapolate::Bool
iguesser::Guesser{tType}
itp::itpType
function LinearInterpolationIntInv(u, t, A)
new{typeof(u), typeof(t), typeof(A), eltype(u)}(
N = get_output_dim(u)
new{typeof(u), typeof(t), typeof(A), eltype(u), N}(
u, t, A.extrapolate, Guesser(t), A)
end
end
Expand Down Expand Up @@ -79,15 +80,16 @@ Can be easily constructed with `invert_integral(A::ConstantInterpolation{<:Abstr
- `t` : Given by `A.I` (the cumulative integral of `A`)
- `A` : The `ConstantInterpolation` object
"""
struct ConstantInterpolationIntInv{uType, tType, itpType, T} <:
AbstractIntegralInverseInterpolation{T}
struct ConstantInterpolationIntInv{uType, tType, itpType, T, N} <:
AbstractIntegralInverseInterpolation{T, N}
u::uType
t::tType
extrapolate::Bool
iguesser::Guesser{tType}
itp::itpType
function ConstantInterpolationIntInv(u, t, A)
new{typeof(u), typeof(t), typeof(A), eltype(u)}(
N = get_output_dim(u)
new{typeof(u), typeof(t), typeof(A), eltype(u), N}(
u, t, A.extrapolate, Guesser(t), A
)
end
Expand Down
Loading
Loading