It is an app for the amiga which can help farmers to enhance their farm output by providing them valuable insights about their field, spanning from classificatio between mature and immature crops, to detecting weeds or pests.
-
- Google Colab
- Ultralytics
- ClearML
-
- JetPack SDK(v5.1.b147)
- farm-ng-amiga(v2.3.1)
- farm-ng-core(v2.3.0)
- farm-ng-package(0.1.3)
- onnx(v1.16.3)
- OpenCV-python(v4.10.0.84)
- Numpy(v1.24.4)
- PyCuda(v2024.1)
- Python(v3.8)
- setuptools(v71.1.0)
- torch(v2.0.0+nv23.5)
- torchvision(v0.15.1)
- Ultralytics
- npm(v10.8.2)
- nvm(v0.39.7)
- FastAPI
- Use your SSH credentials to SSH to one of the Amiga's, using
ssh <brain-name>
- Switch to your user profile on the brain
cd /mnt/managed_home/farm-ng-user-<username>
- Create a python virtual enviornment, using
python -m venv <virtual-env-name>
- Activate the virtual enviornment
source <virtaul-env-name>/bin/activate
- Clone the Farmng-crop-detection repository
git clone --branch master https://github.com/Sapienscoding/Farmng-crop-detection.git
- Change to repo directory
cd Farmng-crop-detection
- Install the dependencies
pip -r install requirement.txt
- To run the inference on the brain
python test.py --service-config service_config.json --model-path yv8_64.engine
- Making dataset more robust, in distinguishing which one is strawberry and which one is not
- Training the model for other crops
- Extracting insightful data for users to visualize.
- Geo-tagging the detections