Skip to content

Commit

Permalink
Setup and run pre-commit for all files (#122)
Browse files Browse the repository at this point in the history
  • Loading branch information
BryanFauble authored Jul 3, 2024
1 parent 2c3439f commit 99fb889
Show file tree
Hide file tree
Showing 21 changed files with 1,086 additions and 1,088 deletions.
18 changes: 10 additions & 8 deletions .pre-commit-config.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -17,11 +17,13 @@ repos:
rev: v1.4.1
hooks:
- id: remove-tabs
#- repo: https://github.com/pre-commit/mirrors-isort
# rev: v5.10.1
# hooks:
# - id: isort
# name: isort (python)
# entry: isort
# language: python
# types: [python]
- repo: https://github.com/pycqa/isort
rev: 5.13.2
hooks:
- id: isort
name: isort (python)
- repo: https://github.com/psf/black
rev: 23.3.0
hooks:
- id: black
language_version: python3
7 changes: 7 additions & 0 deletions pyproject.toml
Original file line number Diff line number Diff line change
@@ -0,0 +1,7 @@
[tool.black]
line-length = 88
target-version = ['py39']
include = '\.pyi?$'

[tool.isort]
profile = "black"
2 changes: 1 addition & 1 deletion src/glue/jobs/compare_parquet_datasets.py
Original file line number Diff line number Diff line change
@@ -1,10 +1,10 @@
from collections import namedtuple
import datetime
import json
import logging
import os
import sys
import zipfile
from collections import namedtuple
from io import BytesIO, StringIO
from typing import Dict, List, NamedTuple, Union

Expand Down
69 changes: 37 additions & 32 deletions src/glue/jobs/json_to_parquet.py
Original file line number Diff line number Diff line change
Expand Up @@ -20,13 +20,13 @@
import pandas
from awsglue import DynamicFrame
from awsglue.context import GlueContext
from awsglue.job import Job
from awsglue.gluetypes import StructType
from awsglue.job import Job
from awsglue.utils import getResolvedOptions
from pyspark import SparkContext
from pyspark.sql import Window
from pyspark.sql.functions import row_number, col
from pyspark.sql.dataframe import DataFrame
from pyspark.sql.functions import col, row_number

# Configure logger to use ECS formatting
logger = logging.getLogger(__name__)
Expand All @@ -46,14 +46,23 @@
"fitbitintradaycombined": ["ParticipantIdentifier", "Type", "DateTime"],
"fitbitrestingheartrates": ["ParticipantIdentifier", "Date"],
"fitbitsleeplogs": ["ParticipantIdentifier", "LogId"],
"healthkitv2characteristics": ["ParticipantIdentifier", "HealthKitCharacteristicKey"],
"healthkitv2characteristics": [
"ParticipantIdentifier",
"HealthKitCharacteristicKey",
],
"healthkitv2samples": ["ParticipantIdentifier", "HealthKitSampleKey"],
"healthkitv2heartbeat": ["ParticipantIdentifier", "HealthKitHeartbeatSampleKey"],
"healthkitv2statistics": ["ParticipantIdentifier", "HealthKitStatisticKey"],
"healthkitv2clinicalrecords": ["ParticipantIdentifier", "HealthKitClinicalRecordKey"],
"healthkitv2clinicalrecords": [
"ParticipantIdentifier",
"HealthKitClinicalRecordKey",
],
"healthkitv2electrocardiogram": ["ParticipantIdentifier", "HealthKitECGSampleKey"],
"healthkitv2workouts": ["ParticipantIdentifier", "HealthKitWorkoutKey"],
"healthkitv2activitysummaries": ["ParticipantIdentifier", "HealthKitActivitySummaryKey"],
"healthkitv2activitysummaries": [
"ParticipantIdentifier",
"HealthKitActivitySummaryKey",
],
"garminactivitydetailssummary": ["ParticipantIdentifier", "SummaryId"],
"garminactivitysummary": ["ParticipantIdentifier", "SummaryId"],
"garminbloodpressuresummary": ["ParticipantIdentifier", "SummaryId"],
Expand Down Expand Up @@ -125,7 +134,7 @@ def get_table(
glue_context: GlueContext,
record_counts: dict,
logger_context: dict,
) -> DynamicFrame:
) -> DynamicFrame:
"""
Return a table as a DynamicFrame with an unambiguous schema. Additionally,
we drop any superfluous partition_* fields which are added by Glue.
Expand Down Expand Up @@ -168,7 +177,7 @@ def drop_table_duplicates(
data_type: str,
record_counts: dict[str, list],
logger_context: dict,
) -> DataFrame:
) -> DataFrame:
"""
Drop duplicate samples and superflous partition columns.
Expand All @@ -193,19 +202,15 @@ def drop_table_duplicates(
spark_df = table.toDF()
if "InsertedDate" in spark_df.columns:
window_ordered = window_unordered.orderBy(
col("InsertedDate").desc(),
col("export_end_date").desc()
col("InsertedDate").desc(), col("export_end_date").desc()
)
else:
window_ordered = window_unordered.orderBy(
col("export_end_date").desc()
)
window_ordered = window_unordered.orderBy(col("export_end_date").desc())
table_no_duplicates = (
spark_df
.withColumn('ranking', row_number().over(window_ordered))
.filter("ranking == 1")
.drop("ranking")
.cache()
spark_df.withColumn("ranking", row_number().over(window_ordered))
.filter("ranking == 1")
.drop("ranking")
.cache()
)
count_records_for_event(
table=table_no_duplicates,
Expand All @@ -224,7 +229,7 @@ def drop_deleted_healthkit_data(
glue_database: str,
record_counts: dict[str, list],
logger_context: dict,
) -> DataFrame:
) -> DataFrame:
"""
Drop records from a HealthKit table.
Expand Down Expand Up @@ -255,8 +260,8 @@ def drop_deleted_healthkit_data(
glue_client.get_table(DatabaseName=glue_database, Name=deleted_table_name)
except glue_client.exceptions.EntityNotFoundException as error:
logger.error(
f"Did not find table with name '{deleted_table_name}' ",
f"in database {glue_database}."
f"Did not find table with name '{deleted_table_name}' ",
f"in database {glue_database}.",
)
raise error
deleted_table_logger_context = deepcopy(logger_context)
Expand All @@ -270,7 +275,9 @@ def drop_deleted_healthkit_data(
logger_context=deleted_table_logger_context,
)
if deleted_table_raw.count() == 0:
logger.info(f"The table for data type {deleted_data_type} did not contain any records.")
logger.info(
f"The table for data type {deleted_data_type} did not contain any records."
)
return table
# we use `data_type` rather than `deleted_data_type` here because they share
# an index (we don't bother including `deleted_data_type` in `INDEX_FIELD_MAP`).
Expand All @@ -281,9 +288,9 @@ def drop_deleted_healthkit_data(
logger_context=deleted_table_logger_context,
)
table_with_deleted_samples_removed = table.join(
other=deleted_table,
on=INDEX_FIELD_MAP[data_type],
how="left_anti",
other=deleted_table,
on=INDEX_FIELD_MAP[data_type],
how="left_anti",
)
count_records_for_event(
table=table_with_deleted_samples_removed,
Expand All @@ -300,7 +307,7 @@ def archive_existing_datasets(
workflow_name: str,
workflow_run_id: str,
delete_upon_completion: bool,
) -> list[dict]:
) -> list[dict]:
"""
Archives existing datasets in S3 by copying them to a timestamped subfolder
within an "archive" folder. The format of the timestamped subfolder is:
Expand Down Expand Up @@ -368,7 +375,7 @@ def write_table_to_s3(
workflow_name: str,
workflow_run_id: str,
records_per_partition: int = int(1e6),
) -> None:
) -> None:
"""
Write a DynamicFrame to S3 as a parquet dataset.
Expand Down Expand Up @@ -441,7 +448,7 @@ def count_records_for_event(
event: CountEventType,
record_counts: dict[str, list],
logger_context: dict,
) -> dict[str, list]:
) -> dict[str, list]:
"""
Compute record count statistics for each `export_end_date`.
Expand Down Expand Up @@ -488,7 +495,7 @@ def store_record_counts(
namespace: str,
workflow_name: str,
workflow_run_id: str,
) -> dict[str, str]:
) -> dict[str, str]:
"""
Uploads record counts as S3 objects.
Expand Down Expand Up @@ -534,7 +541,7 @@ def add_index_to_table(
table_name: str,
processed_tables: dict[str, DynamicFrame],
unprocessed_tables: dict[str, DynamicFrame],
) -> DataFrame:
) -> DataFrame:
"""Add partition and index fields to a DynamicFrame.
A DynamicFrame containing the top-level fields already includes the index
Expand Down Expand Up @@ -667,9 +674,7 @@ def main() -> None:
logger_context=logger_context,
)
table_dynamic = DynamicFrame.fromDF(
dataframe=table,
glue_ctx=glue_context,
name=table_name
dataframe=table, glue_ctx=glue_context, name=table_name
)
# Export new table records to parquet
if has_nested_fields(table.schema):
Expand Down
Loading

0 comments on commit 99fb889

Please sign in to comment.