Skip to content

Commit

Permalink
Undo commenting out NF4/bitsandbytes tests (pytorch#1370)
Browse files Browse the repository at this point in the history
  • Loading branch information
SalmanMohammadi authored Aug 20, 2024
1 parent 5155c4a commit 2f8ed7a
Showing 1 changed file with 117 additions and 117 deletions.
234 changes: 117 additions & 117 deletions tests/torchtune/modules/low_precision/test_nf4_linear.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,120 +4,120 @@
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.

# # Copyright (c) Meta Platforms, Inc. and affiliates.
# # All rights reserved.
# #
# # This source code is licensed under the BSD-style license found in the
# # LICENSE file in the root directory of this source tree.


# import bitsandbytes as bnb
# import pytest
# import torch
# from torchao.dtypes.nf4tensor import NF4Tensor
# from torchtune.modules.low_precision import FrozenNF4Linear
# from torchtune.utils.seed import set_seed


# @pytest.fixture(autouse=True)
# def random():
# set_seed(31)


# def _build_bnb_linear(input_weight):
# """
# Builds a bnb.nn.LinearNF4 from a given input weight
# """
# param = bnb.nn.Params4bit(input_weight, requires_grad=False, quant_type="nf4")
# bnb_linear = bnb.nn.LinearNF4(
# input_weight.size(0), input_weight.size(1), bias=False
# )
# bnb_linear.weight = param
# bnb_linear.cuda()
# return bnb_linear


# class TestNF4Linear:
# """
# Class for testing our NF4Linear implementation.
# """

# def test_bias_unsupported(self):
# with pytest.raises(RuntimeError, match="does not currently support biases"):
# _ = FrozenNF4Linear(1, 1, bias=True)

# @pytest.mark.parametrize("dtype", [torch.bfloat16, torch.float32])
# def test_parameters(self, dtype):
# nf4_linear = FrozenNF4Linear(512, 512, device="cpu", dtype=dtype)
# params = list(nf4_linear.parameters())
# assert len(params) == 1
# assert isinstance(params[0], NF4Tensor)

# @pytest.mark.parametrize("dtype", [torch.bfloat16, torch.float32])
# def test_state_dict(self, dtype):
# nf4_linear = FrozenNF4Linear(512, 512, device="cpu", dtype=dtype)
# state_dict = nf4_linear.state_dict()
# assert len(state_dict) == 1
# assert isinstance(state_dict["weight"], NF4Tensor)

# @pytest.mark.parametrize("dtype", [torch.bfloat16, torch.float32])
# def test_output_dtype(self, dtype):
# # Test to ensure W4 A16 produces A16 / W4A32 produces A32
# nf4_linear = FrozenNF4Linear(512, 512, device="cpu", dtype=dtype)
# inp = torch.randn(2, 512, dtype=dtype, requires_grad=True)
# out = nf4_linear(inp)
# assert out.dtype == dtype

# @pytest.mark.parametrize("dtype", [torch.bfloat16, torch.float32])
# def test_backward_dtype(self, dtype):
# # Test to ensure backward pass gives activation a bf16 gradient and no gradient
# # to the linear's weight, as it is frozen.
# nf4_linear = FrozenNF4Linear(512, 512, device="cpu", dtype=dtype)
# inp = torch.randn(2, 512, dtype=dtype, requires_grad=True)
# nf4_linear(inp).sum().backward()
# assert inp.grad is not None and inp.grad.dtype == dtype
# assert nf4_linear.weight.grad is None

# @pytest.mark.skipif(not torch.cuda.is_available(), reason="Need CUDA available")
# @pytest.mark.parametrize("dtype", [torch.bfloat16, torch.float32])
# def test_nf4_reconstruction_vs_bnb(self, dtype):
# """
# Ensures a BNB NF4 linear and our FrozenNF4Linear have low error when
# reconstructing the respective original weights.
# """
# dim = 512
# nf4_linear = FrozenNF4Linear(dim, dim, device="cuda", dtype=dtype)
# orig_weight = nf4_linear.weight.get_original_weight().clone().detach()
# bnb_nf4_linear = _build_bnb_linear(input_weight=orig_weight)

# # From https://github.com/drisspg/transformer_nuggets/blob/f05afad68ad9086d342268f46a7f344617a02314/test/test_qlora.py#L65
# bnb_reconstruction = bnb_nf4_linear(
# torch.eye(dim, dim, dtype=dtype, device="cuda")
# )
# # Ensure nf4_linear and bnb reconstructions are close to each other.
# assert torch.allclose(
# bnb_reconstruction.T, nf4_linear.weight.get_original_weight(), 1e-2
# )

# @pytest.mark.skipif(not torch.cuda.is_available(), reason="Need CUDA available")
# @pytest.mark.parametrize("dtype", [torch.bfloat16, torch.float32])
# def test_nf4_bnb_linear(self, dtype):
# """
# This test ensures that nf4_linear is "no worse" than BNB by ensuring the
# error compared to a bf16 linear is not more than BNB's implementation.
# """
# dim = 512
# nf4_linear = FrozenNF4Linear(dim, dim, device="cuda", dtype=dtype)
# orig_weight = nf4_linear.weight.get_original_weight().clone().detach()
# bnb_nf4_linear = _build_bnb_linear(input_weight=orig_weight)
# bf16_linear = torch.nn.Linear(dim, dim, device="cuda", dtype=dtype)

# inp = torch.randn(2, 512, dtype=dtype, device="cuda")

# out_nf4 = nf4_linear(inp)
# out_bnb = bnb_nf4_linear(inp)
# out_ref = bf16_linear(inp)

# err_bnb = out_bnb - out_ref
# err_native = out_nf4 - out_ref
# assert torch.allclose(err_bnb, err_native, 1.0e-2, 1.0e-2)
try:
import bitsandbytes as bnb

bnb_installed = True
except ImportError:
bnb_installed = False
import pytest
import torch
from torchao.dtypes.nf4tensor import NF4Tensor
from torchtune.modules.low_precision import FrozenNF4Linear
from torchtune.utils.seed import set_seed


@pytest.fixture(autouse=True)
def random():
set_seed(31)


def _build_bnb_linear(input_weight):
"""
Builds a bnb.nn.LinearNF4 from a given input weight
"""
param = bnb.nn.Params4bit(input_weight, requires_grad=False, quant_type="nf4")
bnb_linear = bnb.nn.LinearNF4(
input_weight.size(0), input_weight.size(1), bias=False
)
bnb_linear.weight = param
bnb_linear.cuda()
return bnb_linear


class TestNF4Linear:
"""
Class for testing our NF4Linear implementation.
"""

def test_bias_unsupported(self):
with pytest.raises(RuntimeError, match="does not currently support biases"):
_ = FrozenNF4Linear(1, 1, bias=True)

@pytest.mark.parametrize("dtype", [torch.bfloat16, torch.float32])
def test_parameters(self, dtype):
nf4_linear = FrozenNF4Linear(512, 512, device="cpu", dtype=dtype)
params = list(nf4_linear.parameters())
assert len(params) == 1
assert isinstance(params[0], NF4Tensor)

@pytest.mark.parametrize("dtype", [torch.bfloat16, torch.float32])
def test_state_dict(self, dtype):
nf4_linear = FrozenNF4Linear(512, 512, device="cpu", dtype=dtype)
state_dict = nf4_linear.state_dict()
assert len(state_dict) == 1
assert isinstance(state_dict["weight"], NF4Tensor)

@pytest.mark.parametrize("dtype", [torch.bfloat16, torch.float32])
def test_output_dtype(self, dtype):
# Test to ensure W4 A16 produces A16 / W4A32 produces A32
nf4_linear = FrozenNF4Linear(512, 512, device="cpu", dtype=dtype)
inp = torch.randn(2, 512, dtype=dtype, requires_grad=True)
out = nf4_linear(inp)
assert out.dtype == dtype

@pytest.mark.parametrize("dtype", [torch.bfloat16, torch.float32])
def test_backward_dtype(self, dtype):
# Test to ensure backward pass gives activation a bf16 gradient and no gradient
# to the linear's weight, as it is frozen.
nf4_linear = FrozenNF4Linear(512, 512, device="cpu", dtype=dtype)
inp = torch.randn(2, 512, dtype=dtype, requires_grad=True)
nf4_linear(inp).sum().backward()
assert inp.grad is not None and inp.grad.dtype == dtype
assert nf4_linear.weight.grad is None

@pytest.mark.skipif(not bnb_installed, reason="bitsandbytes is not installed")
@pytest.mark.skipif(not torch.cuda.is_available(), reason="Need CUDA available")
@pytest.mark.parametrize("dtype", [torch.bfloat16, torch.float32])
def test_nf4_reconstruction_vs_bnb(self, dtype):
"""
Ensures a BNB NF4 linear and our FrozenNF4Linear have low error when
reconstructing the respective original weights.
"""
dim = 512
nf4_linear = FrozenNF4Linear(dim, dim, device="cuda", dtype=dtype)
orig_weight = nf4_linear.weight.get_original_weight().clone().detach()
bnb_nf4_linear = _build_bnb_linear(input_weight=orig_weight)

# From https://github.com/drisspg/transformer_nuggets/blob/f05afad68ad9086d342268f46a7f344617a02314/test/test_qlora.py#L65
bnb_reconstruction = bnb_nf4_linear(
torch.eye(dim, dim, dtype=dtype, device="cuda")
)
# Ensure nf4_linear and bnb reconstructions are close to each other.
assert torch.allclose(
bnb_reconstruction.T, nf4_linear.weight.get_original_weight(), 1e-2
)

@pytest.mark.skipif(not bnb_installed, reason="bitsandbytes is not installed")
@pytest.mark.skipif(not torch.cuda.is_available(), reason="Need CUDA available")
@pytest.mark.parametrize("dtype", [torch.bfloat16, torch.float32])
def test_nf4_bnb_linear(self, dtype):
"""
This test ensures that nf4_linear is "no worse" than BNB by ensuring the
error compared to a bf16 linear is not more than BNB's implementation.
"""
dim = 512
nf4_linear = FrozenNF4Linear(dim, dim, device="cuda", dtype=dtype)
orig_weight = nf4_linear.weight.get_original_weight().clone().detach()
bnb_nf4_linear = _build_bnb_linear(input_weight=orig_weight)
bf16_linear = torch.nn.Linear(dim, dim, device="cuda", dtype=dtype)

inp = torch.randn(2, 512, dtype=dtype, device="cuda")

out_nf4 = nf4_linear(inp)
out_bnb = bnb_nf4_linear(inp)
out_ref = bf16_linear(inp)

err_bnb = out_bnb - out_ref
err_native = out_nf4 - out_ref
assert torch.allclose(err_bnb, err_native, 1.0e-2, 1.0e-2)

0 comments on commit 2f8ed7a

Please sign in to comment.